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Summary 

The 43 kDa AChR-associated protein rapsyn is re- 
quired for the clustering of nicotinic acetylcholine re- 
ceptors (AChRs) at the developing neuromuscular 
junction, but the functions of other postsynaptic pro- 
teins colocalized with the AChR are less clear. Here 
we use a fibroblast expression system to investigate 
the role of the dystrophin-glycoprotein complex (DGC) 
in AChR clustering. The agrin-binding component of 
the DGC, dystroglycan, is found evenly distributed 
across the cell surface when expressed in  fibroblasts. 
However, dystroglycan colocalizes with AChR-rapsyn 
clusters when these proteins are coexpressed. Fur- 
thermore, dystroglycan colocalizes with rapsyn clus- 
ters even in the absence of AChR, indicating that 
rapsyn can cluster dystroglycan and AChR indepen- 
dently. lmmunofluorescence staining using a poly- 
clonal antibody to utrophin reveals a lack of staining of 
clusters, suggesting that the immunoreactive species, 
like the AChR, does not mediate the observed rapsyn- 
dystroglycan interaction. Rapsyn may therefore be a 
molecular link connecting the AChR to the DGC. At 
the neuromuscular synapse, rapsyn-mediated linkage 
of the AChR to the cytoskeleton-anchored DGC may 
underlie AChR cluster stabilization. 

Introduction 

Efficient signal transmission between neurons and their 
targets depends on the formation of highly specialized 
structures both pre- and postsynaptically. At the neuro- 
muscular junction, a particularly striking example of mo- 
lecular specialization is the clustered distribution of nico- 
tinic acetylcholine receptors(AChRs). Prior to innervation, 
AChRs are evenly distributed along the muscle mem- 
brane. Following contact with the motor nerve ending, the 
concentration of AChRs increases dramatically and even- 
tually reaches 10,000 moleculeslpm2 in the postsynaptic 
membrane, whileonly afew micrometers away the density 
of AChRs is 1000-fold lower (Fertuck and Salpeter, 1974; 
Bevan and Steinbach, 1977). Agrin, a nerve-derived extra- 
cellular matrix protein, provides at least part of the signal 
that induces the process of AChR clustering (reviewed in 
McMahan et al., 1992; Nastuk and Fallon, 1993). 

A number of proteins associated with the postsynaptic 
membrane at the neuromuscular junction have been impli- 
cated in the molecular mechanisms underlying formation 
and maintenance of AChR clusters (reviewed in Apel and 
Merlie, 1995). Experiments employing extraction of extrin- 
sic membrane proteins from AChR-rich membranes dem- 
onstrated that removal of 43, 58, and 87 kDa molecular 
weight species correlated with increases in the mobility 
of the receptor (Barrantes et al., 1980; Lo et al., 1980; 
Cartaud et al., 1981 ; Rousselet et al., 1982) without affect- 
ing its ligand binding or gating properties (Neubig et al., 
1979; Elliot et al., 1980). The 43 kDa AChR-associated 
protein, rapsyn (Frail et al., 1988), is precisely colocalized 
with AChR (Froehner et al., 1981; Sealock et al., 1984), 
and accumulating evidence indicates a direct role for 
rapsyn in AChR clustering (reviewed in Phillips and Merlie, 
1992). Rapsyn is identical to the AChR-associated protein 
referred to as the 43 kDa protein, but we encourage the 
use of the name rapsyn to distinguish this protein from 
other 43 kDa components of the postsynaptic membrane. 
The 58 kDa (recently renamed syntrophin; Adams et al., 
1993) and 87 kDa proteins alsocolocalize with AChR at the 
neuromuscular junction, but are present extrasynaptically 
as well (Froehner et al., 1987; Carr et al., 1989). The pre- 
cise roles of syntrophin and the 87 kDa protein in AChR 
clustering remain unclear, but biochemical evidence indi- 
cates that both proteins associate in a complex with the 
cytoskeletal protein dystrophin extrajunctionally, and with 
the dystrophin-related protein utrophin at the synapse 
(Butler et al., 1992; Matsumura et al., 1992; Wagner et 
al., 1993; Kramarcy et al., 1994; Suzuki et al., 1994; Ahn 
and Kunkel, 1995; Suzuki et al., 1995; Yang et al., 1995). 

Independent lines of research investigating the role of 
dystrophin and utrophin in muscle membrane integrity 
have identified several additional protein components in 
a complex containing syntrophin and the 87 kDa protein 
(see Figure 6). This dystrophin-glycoprotein complex 
(DGC) was first isolated based on its tight association with 
dystrophin (Emasti et al., 1990; Yoshida and Ozawa, 
1990), but utrophin has subsequently been shown to also 
associate with the DGC (Matsumura et al., 1992). The 
DGC is composed of transmembrane proteins of 25, 35, 
43 (P-dystroglycan and yet another distinct 43 kDa protein 
that is less well characterized), and 50 kDa (adhalin); a 
heavily glycosylated extracellular protein (a-dystrogly- 
can); and syntrophin, an intracellular 59 kDa protein triplet 
previously characterized as an AChR-associated protein 
(Emasti et al., 1990; Yoshida and Ozawa, 1990; Ervasti 
and Campbell, 1991; Yoshida et al., 1994). An 87 kDa 
species frequently found in DGC preparations is likely to 
be the homolog of the Torpedo 87 kDa AChR-associated 
protein (Ervasti et al., 1990; Yoshida and Ozawa, 1990). 
Like syntrophin and the 87 kDa protein, other components 
of the DGC, namely dystroglycan and adhalin, are found 
colocalized in AChR clusters in cultured muscle cells 
(Campanelli et al., 1994; Gee et al., 1994). Utrophin is also 
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B 
DYSTROGLYCAN NON-TRANSFECTED 

Figure 1. Expression of Dystroglycan in QT-6 
Cells 

(A) Western blot analysis of rabbit mucle, quail 
muscle, and quail QT-6 cells (transfected and 
nontransfected) reveals the absence of endog- 
enousa- and p-dystroglycan in QT-6fibroblasts 
and confirms the expression of recombinant 
a- and p-dystroglycan in QT-6 cells transfected 
with a dystroglycan expression construct. For 
anti-a-dystroglycan staining, 100 pg of rabbit 
muscle crude surface membranes, 250 pg of 
quail muscle crude surface membranes, or 500 
pg of SDS-solubilized wholecell pellets of 
QT-6 cell cultures was loaded per lane. For the 
rest of the blots, different volumes of samples 
of SDS-solubilized whole-cell pellets from 
transfected QT-6 cells were loaded to correct 
for variable transfection efficiency; generally 1 
pg of total protein from transfected and non- 
transfected cells was loaded per lane. Nitro- 
cellulose blots were stained with the antibody 
indicated above each blot: an antibody to a-dys- 
troglycan, apolyclonal antibody (FP-B) that rec- 
ognizes both a- and D-dystroglycan, an anti- 
body to p-dystroglycan, and an antl-rapsyn 
ant~body Molecular we~ght markers (In k~lodal- 
tons) are ~nd~cated at left 
(B) Recombinant rabb~t dystroglycan ex- 
pressed In QT-6 f~broblasts IS evenly d~str~b- 
uted across the cell surface QT-6 cells were 
transfected w~th an expresston construct for 
dystroglycan (left) or mock-transfected w~th an 
equal amount of pSK DNA (r~ght) Permeabll- 
 zed cells were stalned w~th a polyclonal ant!- 
body (FP-B) that recognizes rabb~t a- and 
p-dystroglycan Nontransfected cells stalned 
for dystroglycan exhlb~ted no stalnlng above 
background, conf~rmlng the spec~f~c~ty of dys- 
troglycan stalnlng and the lack of an endoge- 

dystroglycan dystroglycan 

Indeed, a-dystroglycan-specific antibodies that have car- 
bohydrate moieties as part of their epitope did not recog- 
nize the 80 kDa band (data not shown). 

Recombinant dystroglycan expressed in QT-6 cells was 
found evenly distributed across the cell as assessed by 
immunofluorescence microscopy (Figure 1 B). Both per- 
meabilized and nonpermeabilized (data not shown) trans- 
fected cells showed specific staining with an antibody that 
recognizes both a- and B-dystroglycan. The dystroglycan 
expressed must therefore be exposed on the cell surface, 
available for staining. Thus, our results indicate that re- 
combinant dystroglycan expressed in QT-6 cells is cor- 
rectly processed to yield extracellular a-dystroglycan and 
membrane-spanning &dystroglycan. The even distribu- 
tion of dystroglycan across the cell surface demonstrates 
that, unlike rapsyn, dystroglycan expressed alone in QT-6 
cells does not form clusters. 

nous immunoreactive dystroglycan. Cells that 
were not permeabilized before fixation also 
showed a diffuse pattern of staining (data not 
shown), confirming that the recombinant dys- 
troglycan is correctly processed in QT-6 cells 
to yield cell surface a-dystroglycan accessible 
to extracellular staining. Bar, 10 pm. 

Dystroglycan Colocalizes with 
AChR-Rapsyn Clusters 
Dystroglycan is concentrated at the sites of agrin-induced 
AChR clusters in C2 cells and is found both at the neuro- 
muscular junction and throughout the sarcolemmal mem- 
brane in skeletal muscle (Ewasti and Campbell, 1991; 
Campanelli et al., 1994; Gee et al., 1994). To determine 
whether dystroglycan associates with clusters formed in 
QT-6 fibroblasts, which should not express many muscle- 
specific proteins, we coexpressed rapsyn, AChR, and dys- 
troglycan in QT-6 cells and determined the distribution 
of each protein using immunofluorescence microscopy. 
Dystroglycan was found colocalized with AChR and rapsyn 
in AChR-rapsyn clusters (Figure 2A). The codistribution 
was remarkably precise; dystroglycan staining exactly du- 
plicated the rapsyn or AChR staining of clusters. The size 
and shape of clusters varied considerably, yet all clusters 
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RAPSYN + ACHR + DYSTROGLYCAN 
Figure 2. Dystroglycan Colocalizes with AChRl 
43K Clusters in Transfected QT-6 Cells 

(A) QT-6 cells transfected with rapsyn, AChR, 
and dystroglycan expression constructs were 
permeabilized and double stained pairwise 
with anti-rapsyn, anti-ACnR, and antidystrogly- 
can antibodies as indicated beneath each 
panel, followed by appropriate affinity-purified, 
species-specific secondary antibodies. Dystrcz 
glycan staining was found precisely colocalized 
with AChR and rapsyn sta ning of AChR- 
rapsyn clusters. Appropriate controls for fluo- 
rescent cross-bleed and antibody specificity 
were carried out in these and all subsequent 
immunofluorescence experiments (see Experi- 
mental Procedures). Bar. 10 llm. 
(B) QT-6 cells transfected with AChR and dys- 

AChR ransvn troglycan were stained as in (A) to visualize . - r - r - -  

AChR and dystroglycan stainin$. In the ab- 
sence of rapsyn, both AChR and dystroglycan 
staining was evenly distributed across the cell. 
Bar, 10 pm. 

AChR dystroglycan 

rapsyn dystroglycan 

ACHR + DYSTROGLYCAN 

AChR dystroglycan 
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had sharply defined boundaries and were usually present 
on all surfaces of the cell. Dystroglycan-containing clus- 
ters were indistinguishable from clusters formed with 
rapsyn and AChR (Maimone and Merlie, 1993). 

AChR-rapsyn clusters form in QT-6 cells without the 
addition of agrin (data not shown) (Phillips et al., 1991a). 
Surprisingly, dystroglycan association with AChR-rapsyn 
clusters in QT-6 cells alsooccurred in the absence of agrin. 
Furthermore, the addition of agrin did not cause any de- 
tectable changes in dystroglycan-containing cluster fre- 
quency or morphology. We were unable to determine 
whether the recombinant dystroglycan expressed in QT-6 
cells successfully bound agrin in these experiments. 
Nonetheless, the absence of an agrin requirement for clus- 
ter formation in QT-6 cells suggests that at least some of 
the molecular events leading to cluster formation occur 
independently of agrin stimulation, or that pathways regu- 
lating clustering may be constitutively activated in QT-6 
cells. 

Dystroglycan colocalization with AChR-rapsyn clusters 
was a very frequent phenotype; 81% of the cells with 
AChR-rapsyn clusters also exhibited dystroglycan stain- 
ing at clusters (Figure 3). The remaining 19% of the cells, 
which exhibited no detectable dystroglycan staining at 
AChR-rapsyn clusters, generally had only very weakly flu- 
orescent clusters when viewed for AChR staining; it is 
likely that the dystroglycan staining of these clusters was 
merely beneath the limits of detection. When dystroglycan 
and AChR were expressed in the absence of rapsyn, both 
proteins were found to be evenly distributed, suggesting 
that rapsyn is clearly necessary for the formation of clus- 
ters containing AChR and dystroglycan (see Figure 2B). 

Dystroglycan Interacts with Rapsyn Clusters 
Independently of AChR and Utrophin 
or Dystrophin 
We next wanted to determine whether AChR is necessary 

Figure 3. Frequency of Staining Patterns 
QT-6 cells were transfected with expression 
constructs for rapsyn, dystroglycan, and AChR, 

Lystroglycan (DG) in various combinations or each alone, as indi- 

f ips~n cated on the X axis. Stained cells were viewed 
by immunofluorescence microscopy. Cov- 

AChR erslips were scanned systematically. and suc- 
cessfully transfected cells, as judged by stain- 
ing above background for each introduced 
protein, were examined for the presence of 
clusters. Bars represent the percentage of 
transfected cells exhibiting clusters containing 
the particular protein being tested. Dystro- 
glycan colocalization with AChR-rapsyn and 
rapsyn clusters is a very frequent phenotype. 
Some cells with AChR-rapsyn or rapsyn clus- 

- ters did not show corresponding dystroglycan 
staining of clusters, but all dystroglycan-stained 
clusters also stained with anti-rapsyn or anti- 
AChR antibodies. Representative data are pre- 
sented from one of two independent transfec- 
tion experiments for each experimental 
condition. At least 200 transfection-positive 
cells were scored for each condition per exper- 
iment. 

for dystroglycan association with AChR-rapsyn clusters. 
As demonstrated previously, rapsyn was organized into 
clusters in cells transfected with rapsyn alone, suggesting 
that rapsyn aggregation may be the primary event in AChR 
cluster formation (Figure 4A). When cells were transfected 
with rapsyn and dystroglycan without AChR, dystroglycan 
was found colocalized with rapsyn clusters (Figure 48). 
This colocalization was not due to cross-reactivity of the 
dystroglycan primary or secondary antibody, as indicated 
by the lack of specific staining for dystroglycan in cells 
transfected with rapsyn only (Figure 4A). Numerous other 
membrane proteins, including N-cadherin, concanavilin- 
A- and wheat germ agglutinin-binding glycoproteins, glu- 
cose transporters, CD8, and a potassium channel, have 
previously been shown not to beclustered by rapsyn, indi- 
cating the specificity of AChR and dystroglycan clustering 
by rapsyn (Froehner et al., 1990; Maimone and ~er l ie ,  
1993; Yu and Hall, 1994; M. M. Maimone, W. D. Phillips, 
and J. P. M., unpublished data). Furthermore, the colocali- 
zation of dystroglycan with rapsyn clusters was a fre- 
quently observed phenomenon, as 74% of the cells with 
rapsyn clusters also showed positive staining for dystro- 
glycan in clusters (see Figure 3). These results indicate 
that dystroglycan can associate with rapsyn clusters in 
the absence of AChR and further support a central role 
for rapsyn in assembly of the postsynaptic apparatus. 

The observed association of rapsyn with dystroglycan 
could be a direct interaction between the two proteins, or 
the interaction could be mediated by one or more addi- 
tional proteins. Our results show that AChR is not neces- 
sary for the rapsyn-dystroglycan association, but one or 
more endogenous proteins in the QT-6 fibroblasts could 
play a role in the interaction. For example, QT-6 cells may 
express AChR-associated or DGC proteins that could po- 
tentially mediate rapsyn binding to dystroglycan. We were 
unable todetermine whether most of these putative media- 
tors are expressed in QT-6 fibroblasts owing to the lack 
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Figure 4. Dystroglycan Associateswith Rapsyn 
Clusters in the Absence of AChR 

(A) QT-6 cells transfected with raDsvn only 
RAPSYN 

. . 
were permeabilized and double labeled with 
anti-rapsyn and anti-dystroglycan antibodies 
as indicated beneath each panel. Rapsyn 
staining demonstrated that rapsyn was orga- 
nized into clusters when expressed alone in 
QT-6 cells. The absence of staining for dystro- 
glycan confirms the lack of fluorescent cross- 
bleed belween the two fluorescence channels, 
and the absence of cross-reactivity of the anti- 
dystroglycan primary or secondary antibody 
with rapsyn or the anti-rapsyn primary anti- 

rapsyn dystroglycan body, respectively. 

RAPSYN + DYSTROGLYCAN 

(B) Permeabilized cells transfected with rapsyn 
and dystroglycan were stained as in (A). Dys- 
troglycan staining was found colocalized with 
rapsyn clusters, indicating that dystroglycan 
can associate with rapsyn clusters in the ab- 

rapsyn dystroglycan 

rapsyn dystroglycan 

of species cross-reactivity of available antibodies with the 
quail proteins (data not shown). Using Western blot analy- 
sis, we tested available antibodies for their ability to recog- 
nize immunoreactive species in rabbit muscle, quail mus- 
cle, and QT-6 fibroblasts. While antibodies to the 87 kDa 
protein, thesyntrophin triplet, the35 kDa DGCcomponent, 
and dystrophin positively identified bands of the correct 
molecular weight in rabbit muscle extracts, these anti- 
bodies failed to cross-react with any species in quail mus- 
cle or QT-6 cells. We cannot, therefore, definitively rule 
out the participation of endogenous forms of these mole- 
cules in rapsyn-mediated clustering of dystroglycan. How- 
ever, antibodies against adhalin recognized a 50 kDa spe- 
cies in quail muscle but not in QT-6 cells (data not shown), 
making it possible to rule out this DGC protein as a media- 
tor of the rapsyn-dystroglycan interaction. In addition, an 
antibody designated BH11, raised against a C-terminal 
fragment of utrophin (Khurana et al., 1991), recognized 
a single species in QT-6 cells (Figure 5A). Western blot 
analysis further revealed that this antibody recognized two 
bands in rabbit and quail muscle. Owing to the high degree 

of homology between dystrophin and utrophin, it is possi- 
ble that BH11 cross-reacts with both proteins. At present, 
it is difficult to determine which of the discrete bands in 
quail muscle corresponds to utrophin or dystrophin; it is 
therefore unclear which of the two proteins represents the 
immunoreactive species in QT-6 cells. In the remainder 
of the paper, we will refer to the protein recognized by 
BH11 as utrophinldystrophin. However, as full-length dys- 
trophin is expressed primarily in muscle, with lower levels 
in brain, it is likely that the immunoreactive species in QT-6 
fibroblasts represents utrophin (Hoffman et al., 1987; Lev 
et al., 1987; Chamberlain et al., 1988; Nudel et al., 1988). 

To determine whether the endogenous utrophinldys- 
trophin in QT-6 cells mediates the rapsyn-dystroglycan 
interaction, transfected cells were stained with the B H l l  
antibody. This antibody stains the neuromuscular junction 
in mouse and quail muscle sections (Khurana et al., 1991 ; 
P. G. Noakes, W.-X. A. Guo, and J. P. M., unpublished 
data) and would therefore be expected to recognize en- 
dogenous utrophinldystrophin during immunostaining of 
the quail fibroblasts. lmmunofluorescence staining pat- 
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RAPSYN + ACHR + DYSTROGLYCAN 

Figure 5. UtrophinlDystrophin Does Not Medi- 
ate the Rapsyn-Dystroglycan Interaction 

(A) A total of 100 pg of rabbit muscle crude 
surface membranes (lane I), 250 pg of quail 
muscle crude surface membranes (lane 2), or 
500 pg of SDS-solubilized whole-cell pellets of 
QT-6 cell cultures (lane 3) was loaded per lane 
on a 3%-12% gradient gel, and blots were 
stained with a rabbit polyclonal antibody 
(BH11) raised against a C-terminal fragment of 
utrophin. Molecular weight markers (in kilodal- 
tons) are indicated at left. 
(6) Permeabilized QT-6 cells transfected with 
rapsyn, AChR, and dystroglycan were double 
labeled with an anti-AChR antibody and a poly- 
clonal antibody raised against the C-terminal 
fragment of utrophin, as indicated beneath 
each panel. As depicted in the top two panels, 
utrophinldystrophin staining was not detected 
at AChR-rapsyn clusters. To ensure that the 
observed diffuse staining pattern represented 
specific staining above background, parallel 
coverslipswere stained in the absenceof either 
the anti-AChR or BH11 primary antibody as in- 
dicated beneath the corresponding panel. 
Such cells showed AChR staining of patches 
or diffuse utrophinldystrophin staining similar 
to that shown in the top two panels, but no 
flurorescent signalon thesecondchannel. Bar. 
10 pm. 

AChR utrophin I dystrophin 

AChR no utrophin I dystrophin primary 

no AChR primary utrophin I dystrophin 

terns in QT-6 cells indicated an even distribution of does not therefore appear to mediate the rapsyn-dystro- 
utrophinldystrophin throughout the cell, with no observed glycan interaction. Together, these data indicate that rap- 
concentration of the immunoreactive species at dystrogly- syn interacts independently with dystroglycan and the 
can-containing clusters (Figure 5B). Utrophinldystrophin AChR, and therefore could serve as a molecular link be- 
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Figure 6. Schematic Model of the Hypothetical Molecular Organization of the Postsynaptic Apparatus at the Neuromuscular Junction 

Shown are the molecules proposed to play a role in AChR clustering at the neuromuscular junction, arranged with predicted interactions depicted. 
Apparent molecular weights that originally defined each depicted protein are indicated at the right; on the left, alternative names are shown. We 
encourage the use of the names rapsyn and p-dystroglycan to differentiate these 43 kDa proteins. This is especially important in light of the recent 
distinction of yet another 43 kDa DGC component as a unique species. We propose that rapsyn links the AChR to the DGC, thereby facilitating 
the association of AChR clusters with the cytoskeleton. Biochemical analysis of Torpedo electric organ postsynaptic membranes suggests a 1:l 
stoichiometry of AChR and rapsyn (LaRochelle and Froehner, 1986), but other components appear to be less abundant, consistent with our 
proposal that the formation of mature clusters involves the linkage of many AChR-rapsyn small clusters to each dystroglycan molecule (see text 
for further explanation). 

tween the AChR and the DGC (Figure 6). Furthermore, 
utrophinldystrophin does not appear to play a necessary 
role in this linkage. 

Discussion 

We have investigated the interaction between the AChR 
and the DGC using the QT-6 heterologous cell system. 
QT-6 cells lack rapsyn and AChR, as well as any detect- 
able dystroglycan; yet recombinant rapsyn and AChR 
readily form clusters when coexpressed by transfection 
in these fibroblasts, thereby making this an ideal system 
for reconstitution experiments. The introduction of one 
component of the DGC, dystroglycan, into QT-6cellscoex- 
pressing AChR and rapsyn resulted in the codistribution 
of dystroglycan to AChR-rapsyn clusters. Dystroglycan 
expressed by itself, however, was found evenly distributed 
across the cell. This is in contrast to rapsyn, which forms 
clusters when expressed alone in QT-6 cells. Dystroglycan 
association with clusters, therefore, is likely to occur as 
a secondary event and is not needed to initiate cluster 
formation; rather, the role of dystroglycan in cluster forma- 
tion in native muscle may be to provide an anchor point 
within the cytoskeleton-associated DGC complex to which 
clusters bind and are thereby stably linked to the cyto- 
skeleton. 

When dystroglycan and rapsyn were coexpressed in the 

absence of AChR, dystroglycan was found colocalized 
with rapsyn clusters. AChR is therefore not necessary for 
the observed interaction between dystroglycan and clus- 
ters. Since adhalin was undetectable in QT-6 cells, this 
transmembrane DGC component does not mediate the 
rapsyn-dystroglycan interaction. Utrophinldystrophin also 
does not appear to mediate this interaction, since immuno- 
fluorescence staining of an endogenous species recog- 
nized by an anti-utrophin antibody demonstrated no colo- 
calization with dystroglycan-containing clusters. The lack 
of species cross-reactive antibodies made it impossible 
for us to determine whether other AChR-associated and 
DGC proteins are present in rapsyn-dystroglycan clus- 
ters. However, it is improbable that dystrophin, the DGC 
transmembrane 35 kDa protein, or the 87 kDa protein me- 
diate the rapsyn-dystroglycan interaction: these proteins 
are not likely to be present in QT-6 fibroblasts, as their 
expression appears to be restricted to muscle and the 
nervous system (Hoffman et al., 1987; Lev et al., 1987; 
Chamberlain et al., 1988; Nudel et al., 1988; Matsumura 
et al., 1993; Wagner et al., 1993; Yamamoto et al., 1994). 
Isolation of cDNAsforsyntrophin has revealed a multigene 
family of syntrophin proteins (Adams et al., 1993; Ahn et 
al., 1994; Yang et al., 1994), and although one or more 
of these isoforms may be present in QT-6 cells, in vitro 
binding assays indicate that syntrophin does not interact 
directly with dystroglycan (Yang et al., 1995). Furthermore, 
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coimmunoprecipitation and coimmunoaffinity purification 
experiments demonstrated that rapsyn was not present 
in isolated complexes containing syntrophin or the 87 kDa 
protein, again arguing against the possibility that syn- 
trophin or the 87 kDa protein mediate the rapsyn-dystro- 
glycan interaction (Butleret al., 1992; Wagner et al., 1993). 
Future biochemical approaches will clearly be necessary 
to determine whether one or more additional proteins me- 
diate the observed association of rapsyn with dystrogly- 
can, or whether the interaction may be direct. 

Multiple lines of evidence implicate the DGC in AChR 
clustering. The DGC is an oligomeric transmembrane 
complex that binds to utrophin at the synapse, and 
utrophin in turn associates with actin to anchor the DGC to 
the submembrane cytoskeleton (see Figure 6). The recent 
discovery that agrin binds to a-dystroglycan suggests that 
the DGC may serve as a link between the extracellular 
binding of agrin and the intracellular events that mediate 
formation of AChR clusters (Bowe et al., 1994; Campanelli 
et al., 1994; Geeet al., 1994; Sugiyamaet al., 1994). Previ- 
ous indications of the importance of the DGC in AChR 
clustering came from the increasing emphasis on the colo- 
calization of utrophin at AChR clusters (Khurana et al., 
1991 ; Ohlendieck et al., 1991 a; Bewick et al., 1992; Phil- 
lips et al., 1993; Campanelli et al., 1994; Gee et al., 1994), 
as well as the realization that a 59 kDa DGC-associated 
protein is identical to the AChR-associated protein syn- 
trophin (Adams et al., 1993; Yang et al., 1994). Further- 
more, DGC components are enriched at the synapse, in 
addition to being found in extrasynaptic sarcolemmal 
membranes (Matsumura et al., 1992). Although it remains 
to be determined whether agrin binding to a-dystroglycan 
plays a part in AChR clustering, a structural role for the 
DGC in AChR clustering is strongly implied. One function 
of the DGC may therefore be to provide a scaffolding 
through which AChRs may stably associate with the cy- 
toskeleton, thereby promoting the formation or mainte- 
nance of high density clusters. Our finding that rapsyn 
mediates the interaction between the AChR and the DGC 
provides molecular evidence to connect these two halves 
of the postsynaptic apparatus (see Figure 6). Rapsyn may 
therefore be a necessary link in the chain of proteins con- 
necting the AChR to the cytoskeleton. 

Our observation that endogenous utrophinldystrophin 
does not colocalize with clusters formed in QT-6 fibro- 
blasts is surprising in light of the well-established interac- 
tions between dystrophin and utrophin and the DGC, and 
of the proposed role of utrophin in cluster formation (Er- 
vasti et al., 1990; Yoshida and Ozawa, 1990; Ervasti and 
Campbell, 1991; Khurana et al., 1991; Ohlendieck et al., 
1991a; Bewick et al., 1992; Matsumura et al., 1992; Phil- 
lips et al., 1993; Campanelli et al., 1994; Gee et al., 1994; 
Suzuki et al., 1994). Experiments with C2 muscle cells 
demonstrated that, while dystrophin was undetected in 
these cells, utrophin was found at large clusters but not 
small clusters, implying a role for utrophin in the matura- 
tion of clusters rather than in their initial formation (Phillips 
et al., 1993). Similarly, it is possible that clusters found in 
QT-6 cells represent an immature form of clusters that 
have not stably associated with the cytoskeleton. The reg- 

ulatory factors that allow maturing clusters to connect to 
the cytoskeleton may be missing or inactive in QT-6 cells. 
Alternatively, perhaps the rabbit dystroglycan expressed 
in QT-6 cells does not bind to the endogenous quail 
utrophin or dystrophin because of species differences. 
Binding of utrophin to P-dystroglycan has yet to be demon- 
strated, but the homology between utrophin and dys- 
trophin, which does bind directly to P-dystroglycan (Suzuki 
et al., 1994), suggests that such interactions are likely. 
Finally, it is possible that clusters may interact with other 
cytoskeletal proteins besides utrophin or dystrophin, as 
suggested by the observation that AChR-rapsyn clusters 
in QT-6 cells are partially resistant to extraction with Triton 
X-100 (Phillips et al., 1993). Regardless of why clusters 
in QT-6 cells have no associated endogenous utrophinl 
dystrophin, our results demonstrate that at the molecular 
level utrophinldystrophin is not required for rapsyn to inter- 
act with p-dystroglycan; instead, rapsyn can directly link 
the AChR with the transmembrane DGC components, in- 
dependently of the involvement of this cytoskeletal protein. 

Our results indicating that rapsyn links the AChR to the 
DGC provide a critical advance in our understanding of 
the molecular architecture of the postsynaptic apparatus 
(see Figure 6). However, a number of uncertainties con- 
cerning the organization and function of other relevant 
AChR-associated and DGC proteins still remain. For ex- 
ample, if rapsyn is the molecular link between the AChR 
and the cytoskeleton-associated DGC, what are the func- 
tions of syntrophin and the 87 kDa protein, which were 
previously proposed to anchor the AChR to the cytoskele- 
ton (Cartaud et al., 1981; Bloch et al., 1991; Froehner, 
1991 ; Adams et al., 1993; Wagner et al., 1993)? We hy- 
pothesize that syntrophin and the 87 kDa protein are not 
necessary for linking the AChR to the DGC, but rather 
may play a structural or regulatory role in linking the DGC 
to the cytoskeleton. In addition, many of the molecules 
thought to play a role in agrin-induced AChR clustering 
are found throughout the sarcolemmal membrane and are 
not restricted to the synaptic membrane as one might have 
expected. How then is the participation of these proteins 
in events underlying AChR clustering restricted to the syn- 
apse where AChRs are clustered? The specificity must 
derive from associations between these proteins and mol- 
ecules unique to the synapse; extrajunctionally, they may 
interact with different molecules to carry out functions un- 
related to AChR clustering. For example, evidence from 
both normal and dystrophic muscle indicates that the DGC 
plays a critical role in muscle membrane structure and 
function throughout the fiber, and stabilizing interactions 
between the DGC and dystrophin appear to be necessary 
for this function (reviewed in Matsumura and Campbell, 
1994). At the synapse, however, the DGC interacts with 
synaptically localized utrophin and through this spatially 
restricted interaction may play a specialized role in AChR 
clustering (Khurana et al., 1991; Ohlendieck et al., 1991a; 
Bewick et al., 1992; Matsumura et al., 1992; Phillips et 
al., 1993). Rapsyn and one of the syntrophin isoforms are 
also unique to the synapse (Froehner et al., 1981 ; Sealock 
et al., 1984; Peters et al., 1994), and the participation of 
the DGC in the events that underlie AChR clustering may 
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