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Recent molecular and biochemical studies have disclosed the detailed 
molecular organization of the dystrophin-glycoprotein complex, which links 
the cytoskeleton to the extracellular matrix. Defects in several components of 
this complex cause different types of muscular dystrophy. This glycoprotein 
complex is also involved in clustering and anchoring acetylcholine receptors 
at the postsynaptic membrane. 
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Introduction Syntrophin 

The primary structure of dystrophin predicts a rod- Biochemical studies using two-dimensional gel elec- 
shaped cytoskeletal protein. In spite of its sarcolemmal trophoresis revealed that the 59DAP triplet is divided 
localization, dystrophin contains no transmembrane into two groups by its isoelectric points: acidic and 
domains. Initial biochemical experiments demonstrated basic components [5]. On the basis of the association of 
a tight association of dystr$hin with sarcolemmal 
glycoproteins, which suggested that dystrophin was 
involved in the anchoring of sarcolemmal proteins 
to the underlying cytoskeleton [I]. Subsequently, a 
dystrophin-glycoprotein complex (DGC) was purified 
as a large oligomeric complex consisting of no- 
vel sarcolemmal protein or glycoprotein components 
[dystrophin-associated protein (DAP) or dystrophin-as- 
socited glycoprotein (DAG), respectively]: an extracel- 
lular component of 156DAG, a cytoplasmic 59DAP 
triplet, and five transmembrane components of 50DAG, 
43DAG doublet, 35DAG, and 25DAG [2,3]. Cloning 
of one component of the 43DAG doublet revealed 
that a single messenger RNA encodes both 156DAG 
(a-dystroglycan) and 43DAG (p-dystroglycan) and that 
a large precursor polypeptide is post-translationally 
processed into these two glycoproteins [4]. Further 

! characterization of other DAPs by complementary DNA 

! cloning and biochemical analysis is now giving clues 
to the overall membrane organization of the DGC in 
skeletal muscle. This review focuses on recent progress in 
understanding the structure and function of the complex 
and its involvement in the pathogenesis of muscular 
dystrophies. 

the 58 kDa ~orpedohomolo~ue with carboxy-terminal 
domains of molecules of the dystrophin firnily [6], 
the 59DAP triplet was named syntrophin [7]. The 
recent isolation of distinct syntrophin complementary 
DNAs is consistent with biochemical heterogeneity 
and is suggestive of a syntrophin multigene family. 
To date, three separate genes with distinct patterns of 
expression have been identified [7,8*,9*]. The acidic 
a-syntrophin (corresponding to mouse syntrophin-I. [7], 
rabbit 59 DAP-1 [8*], and Torpedo syntrophin [7]) is 
expressed predominantly in skeletal and cardiac muscle. 
The basic PI-syntrophin isolated from a human skeletal 
muscle complementary DNA library is expressed in 
various tissues, but has relatively lower expression in 
brain and heart [9*]. The basic p2-syntrophin was 
originally identified as mouse syntmphin-2 and is also 
present in many tissues [7]. Different tissue distribu- 
tion patterns of syntrophins suggest each syntrophin 
isoform may associate with different molecules of the 
dystrophin family. Subcellular localization determined by 
isoform-specific antibodies has shown that a-syntrophin 
is present throughout the entire sarcolernrna, including 
junctional regions [8*,10*], whereas b2-syntrophin is 
localized to the neuromuscular junction [lo*], suggesting 
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that b2-syntrophin may be associated with utrophin and 
be involved in acetylcholine receptor (AChR) clustering. 
These three syntrophin proteins share 5040% identity 
at the amino acid level and a common domain structure 
containing two pleckstrin homology domains and one 
discs-large homologous region domain which is inserted 
into the amino-terminal pleckstrin homology domain. 
The pleckstrin homology domain is presumed to have 
a function in the recognition of phosphorylated Ser or 
Thr  residues and is found in an increasing number of 
intracellular signaling and cytoskeletal proteins [I 11. The 
discs-large homologous region sequence motif of 80-90 
residues was originally identified in the Dlg-R protein 
family which was involved in signal transduction at tight, 
separate, and synaptic junctions [12]. The presence of 
these domains implies that syntrophins may be involved 
in signal transduction or the membrane-cytoskeletal 
organization. Interestingly, brain nitric oxide synthase 
also contains the discs-large homologous region domain 
and is expressed at the sarcolemma like syntrophin [13]. 

Adhalin 

The functional importance of the 50DAG was suggested 
by the identification of its deficiency in severe childhood 
autosomal recessive muscular dystrophy (SCARMD), 
which is prevalent in Arabic countries. Because of its 
exclusive expression in muscle tissue, the 50DAG was 
renamed adhalin, derived Gom the Arabic word 'adhal' 
for muscle [14]. Afier an initial cloning of rabbit adhalin 
complementary DNA [14], complete cloning of human 
adhalin complementary DNA was reported by two 
groups [15",16*]. An open reading Game encodes a 387 
amino acid protein with a predicted molecular weight 
of 43 255 Da. Human and rabbit adhalin proteins share 
90% homology at the amino acid level and have a 
hydrophobic signal sequence, a single transmembrane 
domain, two potential N-linked glycosylation sites in 
the putative extracellular domain, and one consensus 
site for phosphorylation by Ca2+/calmodulin-dependent 
protein kinase. The extracellular domain contains four 
closely spaced Cys with limited homology to entactin 
and nerve growth factor receptor, suggesting that adhalin 
may serve as a receptor for an extracellular matrix protein 
[I 5**]. The expression of 1.5 kb adhalin messenger 
R N A  is restricted to skeletal, cardiac, and selected 
smooth muscle. The expression of an approximately 1 kb 
adhahn transcript lacking the transmembrane domain has 
also been reported [16*]. Translation of this transcript 
predicts a 35 kDa product, however, a 35 kDa form of 
adhalin has never been detected in purified DGC using 
antibodies which would cross-react with both adhalin 
gene products. 

Molecular organization of the 
dystrophin-glycoprotein complex 

In skeletal muscle, a-dystmglycan binds laminin-2 
(merosin), a tissue-specific laminin isoform which is 
characterized by its a 2  chain [17*]. b-dystroglycan also 
binds directly to  the Cys-rich domain of dystrophin 
[18**]. Thus, dystroglycan links dystrophin to laminin-2. 
In addition, the cytoplasmic domain of fLdystroglycan 
contains a phosphotyrosine consensus sequence and 
several proline-rich regions that could associate with Src 
homology 2 and 3 (SH2 and 3) domains of cytoskeletal 
or signaling proteins. Recently, b-dystroglycan has been 
shown to interact directly with the SH3 domain of 
Grb2, an adapter protein involved in signal transduc- 
tion and cytoskeletal organization [19*]. The specific 
dystroglycan-Grb2 interaction may play an important 
role in extracellular matrix-mediated signal transduction 
or cytoskeletal organization, or both, in skeletal muscle. 

Syntrophins also interact directly with dystrophin. Re- 
cently, three independent groups reported syntrophin- 
binding regions at the dystrophin carboxy-terminal 
domain using overlay assay or affinity precipitation 
with various constructs of dystrophin fusion proteins 
[20*-22.1. Binding sites for a- and PI-syntrophin are 
very close but discrete, and located tandemly around 
exons 73-74, which are known to be alternatively 
spliced to produce a dystrophin isoform in brain, heart, 
and smooth muscle. Mapping of syntrophin binding 
sites to these alternative splice-prone exons suggests that 
there are two functionally distinct dystrophin isoforms 
in the context of the ability to bind syntrophins. 
However, it should be noted that in vivo the molecular 
organization of syntrophin into the complex seems 
more complicated. Transgenic mdx mice expressing 
dystrophin lacking exons 71-74 restore all of the 
DAPs, including the syntrophins, and show normal 
muscle histology and function [23*]. This suggests that 
there may be more syntrophin binding sites beyond 
exons 71-74 as also indicated by the biochemical data 
showing weak syntrophin binding to a further distal 
carboxyl-terminal region of dystrophin [2l0]. Besides 
the syntrophin-dystrophin/utrophin interaction, protein 
overlay assays have shown that a-syntrophin binds the 
syntrophin triplet, suggesting that syntrophins may form 
a subcomplex in vivo [22*]. 

Previous biochemical experiments demonstrated that 
syntrophins were dissociated from the complex and 
that transmenibrane components cosedimented as a 
subcomplex when the DGC was alkaline-treated [24]. In 
addition, anti-adhalin immunoafinity beads precipitated 
the 43 and 35DAG as well as adhalin from the 
alkaline-dissociated DGC [25]. These results suggested 
that these three components (possibly together with 
25DAG) may form a subcomplex in the DGC. Octyl 
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glucoside treatment of the DGC showed the dissociation 
of the components into several distinct groups [26']. This 
experiment suggested that three transmembrane com- 
ponents, adhalin, 43DAG (A3b), and 35DAG, might 
form a subcomplex called the 'sarcoglycan complex' 
which is believed to be muscle specific. The presence 
of the sarcoglycan complex was supported by the 
immunohistochemical findings that these three compo- 
nents were selectively lost in skeletal muscle fiom patients 
with SCARMD in whom other components were well 
preserved [27]. Fig. l a  shows the molecular organization 
of the DGC in the extrajunctional sarcolemma based 
on current knowledge as described above. The precise 
organization between the sarcoglycan complex and 
dystrophin or dystroglycan remains to be determined. 
Recently, aciculin, a 60 kDa cytoskeletal protein with 
high homology to phosphoglucomutase type 1, has been 
shown to associate with dystrophin/utrophin [28*]. The 
aciculin-dystrophin/utrophin interaction may provide 
an additional link between the DGC and the underlying 
cytoskeleton. 

Muscular dystrophies caused by the disrupted 
complex 

Adhalin has been shown to be deficient in SCARMD. 
In several North African families, SCARMD is linked 
to a pericentromeric region on chromosome 13q. 
However, the 13q locus has been excluded in other 

families, suggesting that adhalin deficiency is genetically 
heterogeneous. Last year, mutations in the adhalin 
gene on chromosome 17q were identified in a French 
family with limb-girdle muscular dystrophy (LGMD) 
phenotype [15"]. Since then, several different mutations, 
including missense, nonsense, and in-frame deletion, 
have been identified in an increasing number of auto- 
soma1 recessive LGMD patients with varying severity 
of disease [29*]. Thus, primary adhalinopathy (now 
classified as LGMD2D) is a common cause of LGMD. 
Among mutations so far identified, Arg77Cys is the 
most frequent mutation. Homozygous patients for null 
mutations present the most severe phenotype. . 

A striking discovery in the field of muscular dystrophy in 
the past year was the identification of laminin a 2  chain 
deficiency in congenital muscular dystrophy (CMD). 
Tom6 et al. [30*] reported 13 occidental CMD cases 
characterized by the absence of laminin a 2  chain in 
skeletal muscle basal lamina. In addition, laminin a 2  
chain-negative CMD was linked to chromosome 6p21 
to which the a 2  chain gene has been mapped [31*]. 
Although mutations in the a 2  chain gene have not yet 
been identified, the data suggest primary involvement of 
the a 2  chain as a cause of CMD. Laminin a 2  chain is also 
deficient in the dystrophic dy/dy mouse, a classic murine 
model for muscular dystrophy [I 7*,32,33*]. The mouse 
a 2  chain gene was mapped to a proximal region of 
chromosome 10 close to the dy locus [17*]. Recently, 
the expression of a truncated laminin a 2  chain has 
been demonstrated in the dy2l/dy2J mouse, which is 
an allelic mutant strain of the dy/dy mouse [34",35**]. 

Utrophin (DRP) 

F-actin 
01995 Current Opinion In Neurology 

Fig. 1. The molecular organization of the dystrophin-glycoprotein complex at the (a) extrajunctional sarcolemma and (b) neuromuscular 
junction. Rapsyn (receptor-associated protein at the synapse) is a 43 kDa protein associated with the acetylcholine receptor (AChR). CT, 
carboxy terminal; CR, cysteine-rich domain; N, amino terminal. 



382 Neuromuscular diseases: muscle 

In this mouse, a splice mutation in the a 2  chain gene 
produces several dserent mutant transcripts and encodes 
a truncated a 2  chain which lacks the amino-terminal 
domain VI, which is essential for self-aggregation of 
laminin heterotrimers. Thus, a disrupted formation 
of larninin-2 network in the basal lamina may lead 
to muscle cell degeneration. This is consistent with 
the hypothesis that disruption at any point of the 
cytoskeleton-extracellular matrix linkage via the DGC 
can cause muscular dystrophy. 

Dystrophin-glycoprotein complex at 
neuromuscular junctions 

Recent studies have revealed that the DGC is also 
important at the neuromuscular junction in clustering 
and anchoring of AChR. Tight colocalization of 
utmphin with AChR suggests its involvement in the 
anchoring of AChR. Utrophin has been shown to 
associate with DAI? Furthermore, a Torpedo 58 kDa 
protein which is complexed with the 87 kDa dystyrophin 
isoform at postsynaptic membranes has been shown to 
be a homologue of 59DAP (syntrophin). These findings 
suggest that utrophin together with several components 
of the complex may play a role in the anchoring of 
AChR at the postsynaptic membrane. 

Synapse formation at the neuromuscular junction is 
characterized by AChR clustering on the postsynaptic 
membrane. Several lines of evidence suggest that agrin, 
an extracellular matrix protein produced by nerve, is the 
most promising candidate mediating AChR clustering 
[36]. Because agrin does not directly associate with 
AChR, it has been assumed that binding of agrin 
to its receptor would transmit the signal through 
the membrane, stimulating the formation of AChR 
clusters. However, the agrin receptor was not identified 
until last year when dystroglycan was demonstrated 
as an agrin-binding protein by four different groups 
[37**-40m]. Purification of an agrin-binding protein 
h m  Torpedo postsynaptic membrane by using an 
agrin-affinity column yielded two glycoproteins of 190 
and 50 kDa. By peptide sequence analysis, the 190 kDa 
component, which directly associated with agrin, was 
identified as a-dystroglycan and the 50 kDa compo- 
nent b-dystroglycan [37*]. In addition, specific agrin 
binding to a-dystroglycan in a Ca2+-dependent and 
heparin-inhibitory manner was demonstrated by other 
groups [38**-40**]. Furthermore, a monoclonal antibody 
specific for a-dystroglycan either completely [39"] or 
partially [38**] interfered with agrin-induced AChR 
clustering. These findings suggest that a-dystroglycan 
is necessary for transducing agrin signal for AChR 
clustering. However, one group reported no inhibition 
of agrin-induced clustering by an identical dystmglycan 
monoclonal antibody [40°]. Although the hnctional 
consequence of agrin-dystroglycan interaction remains 

disputed, a structural role of the glycoprotein complex 
in clustering and anchoring AChR is evident. Fig. l b  
shows a possible molecular organization of the complex 
at the neuromuscular junction. 

Conclusion 

In the past year, much progress has been made in 
understanding the molecular organization of the DGC 
in sarcolemma through molecular cloning of syntrophins 
and adhalin and protein-protein interaction analysis 
of components. Different types of muscular dystrophy 
have been shown to result fiom primary defects in 
adhalin and dystrophin. Molecular cloning of other 
components may disclose additional types of muscular 
dystrophy caused by the disruption of this complex. 
The identification of a-dystroglycan as an agrin-binding 
protein may provide a basis for understanding the 
mechanism of synaptogenesis. Further studies should 
advance our understanding of the dynamic function 
of this complex not only in skeletal muscle but also in 
various nonmuscle tissues. 
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