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A novel gene (Cacng2; �2) encoding a protein similar
to the voltage-activated Ca2� channel �1 subunit was
identified as the defective gene in the epileptic and
ataxic mouse, stargazer. In this study, we analyzed the
association of this novel neuronal �2 subunit with Ca2�

channels of rabbit brain, and the function of the �2 sub-
unit in recombinant neuronal Ca2� channels expressed
in Xenopus oocytes. Our results showed that the �2 sub-
unit and a closely related protein (called �3) co-sedi-
mented and co-immunoprecipitated with neuronal Ca2�

channel subunits in vivo. Electrophysiological analyses
showed that �2 co-expression caused a significant de-
crease in the current amplitude of both �1B(�12.2)-class
(36.8%) and �1A(�12.1)-class (39.7%) Ca2� channels
(�1�3�2�). Interestingly, the inhibitory effects of the �2
subunit on current amplitude were dependent on the
co-expression of the �2� subunit. In addition, co-expres-
sion of �2 or �1 also significantly decelerates the activa-
tion kinetics of �1B-class Ca2� channels. Taken together,
these results suggest that the �2 subunit is an important
constituent of the neuronal Ca2� channel complex and
that it down-regulates neuronal Ca2� channel activity.
Furthermore, the �2 subunit likely contributes to the
fine-tuning of neuronal Ca2� channels by counterbal-
ancing the effects of the �2� subunit.

Voltage-activated Ca2� channels play a major role in many
fundamental physiological processes including neurotransmis-
sion, muscle contraction, intracellular signaling, hormone se-
cretion, and development. Understanding the molecular regu-
lation of these channels is critical for the comprehension of
these major physiological phenomena. The high voltage-acti-
vated Ca2� channel (called Ca2� channel hereafter) consists of
at least three subunits: a main subunit, �1, and two auxiliary
subunits, � and �2� (1, 2). An additional auxiliary subunit, �,
initially detected only in skeletal muscle, has been recently
suggested to be a component of the neuronal Ca2� channel
complex (3).

The regulation of Ca2� channels by the � and �2� subunits
has been extensively studied. Both � and �2� subunits have

been found to increase specific ligand binding and to modulate
electrophysiological properties of Ca2� channels including cur-
rent density, voltage dependence, and current kinetics (2).
However, much less is known about the function of the skeletal
muscle � subunit (�1). Some controversial results of �1 effects
on current amplitude, voltage dependence, current kinetics, or
toxin binding have been observed (4–9).

A molecular genetic study of the stargazer mouse revealed a
novel gene responsible for absence epilepsy and ataxia in this
animal model. The study suggested that this novel gene en-
codes a � subunit for neuronal Ca2� channels that has been
named �2 (or stargazin). The first 200 amino acids of the �2 and
�1 sequence share 25% identity and 39% similarity. The exon-
intron organization and predicted secondary structure of the �2

subunit are very similar to that of the �1 subunit (3). Previous
biophysical studies using recombinant Ca2� channels have in-
dicated an inhibitory role for the �2 subunit based on changes
in the voltage dependence of steady-state inactivation of the
channels (3, 10). In addition, a recent finding of novel � iso-
forms (�3, �4, �5) suggests a possibility that a � gene family
originated through tandem and chromosome duplication (11).
On the other hand, a recent study has suggested a role of the �2

subunit on the trafficking/clustering of AMPA1 receptors (12).
Mutations in the Ca2� channel subunits have been impli-

cated in the etiology of absence epilepsy and ataxia in mice:
four �1A mutations in the tottering, leaner, rolling, and rocker
mice (13–15); a �4 mutation in the lethargic mouse (16); a �2�-2
mutation in the ducky mouse (17); and a �2 mutation in the
stargazer mouse (3). Understanding Ca2� channel regulation
at the molecular level will lead to further comprehension of the
mechanisms underlying these neurological disorders.

In this study, by showing the association of the �2 subunit
with other Ca2� channel subunits, we provide biochemical data
supporting the hypothesis that the �2 subunit is a component of
the neuronal Ca2� channel complex. Furthermore, by examin-
ing the function of the �2 subunit using recombinant �1B- and
�1A-class Ca2� channels expressed in Xenopus oocytes, we
show that the novel �2 subunit participates in the modulation
of the neuronal Ca2� channels. Our results demonstrate that
the �2 subunit is a part of the neuronal Ca2� channel complex
and has a �2�-dependent inhibitory effect on the channel
activity.

EXPERIMENTAL PROCEDURES

Partial Purification of Neuronal Ca2� Channels—Brain microsomes
were prepared from rabbit and mouse as described previously (18).
From the microsomes (200 mg of rabbit and 50 mg of mouse micro-
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somes), the Ca2� channel complexes were extracted with solubilization
buffer containing (in mM) 50 Tris-HCl, pH 7.4, 500 NaCl, a mixture of
protease inhibitors, and 1% digitonin (Biochemica & Synthetica, Staad,
Switzerland) by rotating end-over-end at 4 °C for 1 h. After centrifuga-
tion at 142,413 � g for 37 min, solubilized proteins in the supernatant
were then mixed with wheat germ agglutinin (WGA)-agarose beads
(Vector Laboratories, Burlingame, CA) and rotated end-over-end at
4 °C overnight. After washing three times with three bed volumes of
ice-cold wash buffer (Buffer I containing (in mM) 50 Tris-HCl, pH7.4,
500 NaCl, a mixture of protease inhibitors, and 0.1% digitonin), WGA-
bound proteins were eluted with elution buffer (Buffer I � 0.3 M N-
acetyl-D-glucosamine (Sigma)). The WGA eluant was concentrated to
0.5 ml in an Ultrafree-15 centrifugal filter device (Millipore, Bedford,
MA), and applied to a 5–30% sucrose density gradient (Buffer I �
5–30% sucrose). The gradients were centrifuged at 215,000 � g for 90
min. Fractions (0.8 ml) were collected from the top of the gradients
using a density gradient fractionator (Auto Densi-flow, Labconco, Kan-
sas City, MO).

Antibodies—Polyclonal antibodies, Sheep 37, Sheep 46, Rabbit
136, Sheep 49, Rabbit 145, and Rabbit 239, specific for the Ca2�

channel subunits, �1A/B, �1B, �2, �3, �4, and �2/3, respectively, have
been described previously (3, 19–22). The �3 subunit-specific poly-
clonal antibody, Rabbit 302, was generated by Genemed Synthesis
(South San Francisco, CA) against an amino-terminal cysteine 12-
mer peptide (Research Genetics, Huntsville, AL) corresponding to
residues 273–281 of mouse �3 subunit primary structure. Monoclonal
antibody VD21, which recognizes all Ca2� channel � subunits, has
been described previously (23).

Immunoprecipitation of Ca2� Channel Subunits—Antibodies were
cross-linked to protein A-agarose beads (Santa Cruz Biotechnology,
Santa Cruz, CA) using dimethyl pimelimidate as described elsewhere
(24). The partially purified neuronal Ca2� channel complexes were
incubated with the antibody-protein A-agarose beads at 4 °C overnight

on a rolling platform. After washing the beads three times with three
bed volumes of ice-cold wash buffer (Buffer I), Ca2� channel subunits
bound to the antibodies were eluted with 50 mM glycine-HCl, pH 2.5,
and the pH was immediately neutralized with 0.1 volume of 1 M Tris-
HCl, pH 8.0.

Western Blot Analysis—The WGA eluants, sucrose gradient frac-
tions, or immunoprecipitated proteins were resolved in 4–15% gradient
SDS-polyacrylamide gel electrophoresis under reducing condition (2%
�-mercaptoethanol) and transferred to polyvinylidene difluoride mem-
brane (Millipore). The polyvinylidene difluoride blots were cut and
probed separately with affinity-purified antibodies against the subunits
of the Ca2� channel complex or Na�/K� ATPase at 4 °C overnight. After
staining with Horseradish peroxidase-conjugated secondary antibodies
(Roche Molecular Biochemicals), the blots were developed by enhanced
chemiluminescence (ECL) (SuperSignal� or DuraSignal�, Pierce,
Rockford, IL), and imaged using an image capturing system (MultiIm-
age�, Alpha Innotech, San Leandro, CA).

cDNA Clones—cDNA clones used were as follows: rabbit brain �1A

cDNA (4), rat brain �1B-b cDNA (25), rat brain �3 (GenBank� accession
no. M88751), rat brain �2�b (GenBank� accession no. M86621), rabbit
skeletal �1 (26), and mouse brain �2 (3). As expression vectors, pcDNA3
(Invitrogen, Carlsbad, CA) was used for �2�b, �1, and �2; pSP72 (Pro-
mega, Madison, WI) for �1A; pBSTA (27) for �1B; and pGEM3 (Promega)
for �3.

Preparation of Xenopus Oocytes—Female Xenopus laevis were pur-
chased from Nasco (Fort Atkinson, WI). Frogs were maintained under a
12-h light/12-h dark cycle at 18 °C. Ovarian lobes were surgically re-
moved from frogs that had been anesthetized by hypothermia. To facil-
itate injection and recording, the follicle cell layer was enzymatically
digested with 2 mg/ml collagenase type I (Sigma) for 70 min in Ca2�-
free OR-2 solution containing (in mM) 82.5 NaCl, 2.5 KCl, 1 MgCl2, and
5 HEPES-NaOH, pH 7.6. Oocytes at stages V and VI were selected and
washed several times with Ca2�-free OR-2 solution and subsequently

FIG. 1. Association of the �2 and �3
subunits with other neuronal Ca2�

channel subunits. A, sucrose gradient
fractionation of neuronal Ca2� channels.
The numbers at the top indicate the frac-
tion of the sucrose gradient from top to
bottom. Equal volume of proteins (80 �l)
were loaded in each lane. B, characteriza-
tion of the protein bands recognized by
the �2/3 or �3 antibodies. The protein sam-
ples (100 �g each) were from the star-
gazer mice (stg) or their wild-type litter-
mates (WT). The antibodies used for the
Western blot analyses are indicated at
the bottom. C, co-immunoprecipitation of
the �2 and �3 subunits by antibodies spe-
cific for neuronal Ca2� channel subunits.
The first lane (Input) was loaded with the
protein aliquot saved before immunopre-
cipitation. Sheep 37 (anti-�1), VD21 (anti-
�), and Rabbit 239 (anti-�2/3), specific for
the Ca2� channel subunits, �1A/B, �, and
�2/3, respectively, were used for immuno-
precipitation. Equal amounts of proteins
(50 �g) were loaded in each lane. The
antibodies used for immunoprecipitation
are indicated at the top of the other lanes.
Molecular mass standards (�10�3) are
indicated on the left. Data are repre-
sentative of at least three independent
experiments.
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placed in ND96 solution containing (in mM) 96 NaCl, 15 KCl, 1 MgCl2,
1.8 CaCl2, 2.5 sodium pyruvate, and 5 HEPES-NaOH, pH 7.6, plus 1%
penicillin/streptomycin. Before cRNA injection, the oocytes were incu-
bated overnight at 18 °C in ND96 solution.

Heterologous Expression of Ca2� Channel Subunits—Linearized
plasmids were in vitro transcribed with T7 (or SP6 for �1A) polymerase
transcription kits (mMESSAGE mMACHINE, Ambion, Austin, TX).
Transcribed cRNA was purified using the RNeasy kit (Qiagen, Stan-
ford, CA), and then analyzed by gel electrophoresis and stored at
�20 °C. Oocytes were injected with 46 nl of various cRNA mixtures of
Ca2� channel subunits using a nano-injector (Drummond, Broomall,
PA) at the following ratio 2:2:1:1 � �1:�2�:�3:�. The amount of cRNA
injected was varied in each experiment to get current amplitudes under
optimal voltage control. Injected oocytes were incubated at 18 °C in
ND96 solution for 4–5 days before electrophysiological recording.

Electrophysiological Recordings and Data Analyses—Ba2� currents
through Ca2� channels were recorded by the two-electrode voltage-
clamp technique (28) with a TEV-200 amplifier (Dagan, Minneapolis,
MN) at room temperature. Microelectrodes were pulled from borosili-
cate glass capillary (Kimble Glass Co., Vienland, NJ) using a horizontal
puller (Sutter Instrument, Novato, CA). Both voltage and current elec-
trodes were filled with 3 M KCl and had initial tip resistances of 0.5–1.0
megaohm. The recording chamber (500-�l volume) was filled with re-
cording solution containing (in mM) 10 Ba2�(OH)2, 2 KCl, 0.1 EGTA, 80
NaOH, 1 niflumic acid, and 10 HEPES-MES, pH 7.2. Ca2�-activated
Cl� outward currents were minimized by the use of Ba2� as charge
carrier, low concentration of Cl� in the solutions, and niflumic acid (a
Cl� current blocker). Unless otherwise indicated, test potentials were
applied for 2 s from a holding potential of �90 mV using pClamp 6
software (Axon Instruments, Foster City, CA). Output signals were
filtered at 1 kHz and sampled at 5 kHz. Data were digitized with a TL-1
interface (Axon Instruments), and the results were analyzed by pClamp
6 and SigmaPlot 4.01 (SPSS Inc., Chicago, IL). Leak and capacitance
currents were subtracted on-line by a P/6 protocol. If present, residual
capacitance was blanked.

I-V curves were fitted using a modified Boltzmann equation of the
form: I � [Gmax(Vm � E)]/[1 � exp(�(Vm � V1⁄2)/k)], where I represents
current amplitude, Gmax maximum conductance, Vm test potential, E
reversal potential, V1⁄2 potential of half-activation, and k slope factor.
Steady-state activation curves were also described by a modified Bolt-
zmann equation: G � Gmax/[1 � exp((Vm � V1⁄2)/k)], where G represents
conductance obtained from the equation: G � I/(Vm � E). Steady-state
inactivation curves were also described by a modified Boltzmann equa-
tion: I � Imax/[1 � exp((Vm � V1⁄2)/k)]. To obtain the estimates of the
activation and inactivation rates, data were fit to single- and two-
exponential equations, respectively, using the fitting routines of
pClamp 6 software.

Statistical Analysis—Each experiment was repeated at least three
times using different batches of oocytes or brain from different animals.
Data are presented as means � S.E. of the mean, and the number of

oocytes is indicated in the figures and Table I. Data were analyzed by
two-way analysis of variance. When significant F-values were encoun-
tered, the different treatments were compared using the Tukey multi-
ple comparisons test. Probability (p) of 0.05 or less was considered

FIG. 2. Regulation of current ampli-
tude of neuronal Ca2� channels by
the �2 subunit. A, superimposed current
traces of �1B-class channels. B, current-
voltage (I-V) relationships of �1B-class
channels. C, superimposed current traces
of �1A-class channels. D, I-V relationships
of �1A-class channels. Current traces were
averaged from three representative cells
in each group of oocytes, and the voltage
protocol is shown above the traces (A and
C). Ca2� channel subunit composition is
listed in the inset, and the number of re-
corded cells is indicated in parentheses (B
and D). Data are representative of at least
three independent experiments.

FIG. 3. Modulation of voltage dependence of neuronal Ca2�

channels by the �2 subunit. A & B, Superimposed plots of steady-
state activation (G/Gmax) and inactivation (I/Imax) curves from �1B-class
(A) and �1A-class (B) channels. Ca2� channel subunit composition is
listed in the inset, and the number of recorded cells is indicated in
parentheses. Data are representative of at least three independent
experiments.
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significant. The statistical analysis was performed using SYSTAT 7.0
(SPSS Inc.).

RESULTS

Association of the �2 Subunit with Neuronal Ca2� Channel
Subunits—The association of the �2 subunit with the neuronal
Ca2� channel complex was investigated through sucrose gra-
dient fractionation analysis as follows. Ca2� channel complexes

were partially purified from the rabbit cerebellum as described
under “Experimental Procedures.” Western blot analysis of
sucrose gradient fractions with anti-�1B, anti-�2, anti-�3, anti-
�4, and anti-�2/3 antibodies showed that the �1B, �2, �3, �4, and
�2/3 co-sedimented in fractions 9–12 (Fig. 1A). Considering the
much smaller molecular masses of the �2/3 (34 and 38-kDa), �3

(57-kDa) or �4 (57-kDa) subunits compared with that of the �1B

FIG. 4. Modulation of current kinetics of neuronal Ca2� channels by the �2 subunit. A and B, superimposed plotting of �1B-class (A) and
�1A-class (B) channel inactivation time constants (�inact) as a function of the voltage step. Squares and circles present fast (�f) and slow (�s)
inactivation time constants, respectively. Examples of a current trace of �1�3�2��2 at 10 mV and two-exponential fit (thick line) to the inactivating
current are shown in the inset. C, superimposed plots of �1B-class channel activation time constants (�act) as a function of the voltage step. Ca2�

channel subunit composition is listed in the inset, and the number of recorded cells is indicated in parentheses (A–C). D, superimposed current
traces showing the time course of �1B-class channel activation. Current traces were averaged from three representative cells in each group of
oocytes (A, B, and D). Data are representative of at least three independent experiments.

TABLE I
Kinetic parameters of the �1B- and �1A-class Ca2� channels

Values are presented as mean � S.E. *, p � 0.05, **, p � 0.001 (respect to �1�3�2�); V, membrane potential, V1/2, membrane potential for
half-maximal activation (or inactivation); k, slope factor; �act, time constant of activation; n, cell number.

Properties �1B�3 �1B�3�2� �1B�3�2��1 �1B�3�2��2 �1A�3�2� �1A�3�2��2

Steady-state activation parameters
V1/2 (mV) �12.10 � 0.69** �5.63 � 0.87 �9.42 � 0.36** �7.54 � 0.59 �4.35 � 2.03 �0.61 � 0.77
k (mV) �4.61 � 0.13* �5.59 � 0.29 �5.36 � 0.12 �5.68 � 0.18 �5.42 � 0.19 �6.54 � 0.44**
n 5 9 9 8 11 5

Steady-state inactivation parameters
V1/2 (mV) �43.34 � 1.26 �38.86 � 0.81 �42.44 � 1.73 �41.95 � 0.89 �26.52 � 6.51 �23.65 � 2.88
k (mV) 10.13 � 0.55 9.51 � 0.33 9.92 � 0.76 10.22 � 0.36 6.51 � 0.34 10.39 � 2.09*
n 6 10 9 9 11 5

Properties �1B�3 �1B�3�2� �1B�3�2��1 �1B�3�2��2

Time constants of activation (ms)
�act at �20 mV 3.87 � 0.05** 2.31 � 0.09 3.99 � 0.24** 3.12 � 0.22*
�act at �10 mV 4.28 � 0.15** 2.43 � 0.07 4.08 � 0.26** 2.98 � 0.11*
�act at 0 mV 2.70 � 0.16* 1.88 � 0.12 2.40 � 0.13* 2.04 � 0.11
n 5 9 9 8
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subunit (230-kDa), co-sedimentation of the �1B, �3, �4, and �2/3

subunits suggests that the �2/3 subunits are in a complex with
the �1B, �3, and �4 subunits. In addition, the co-sedimentation
of the �1A subunit with �2 subunits was tested by probing the
sucrose gradient blot with Sheep 37 antibody (anti-�1A/�) and
an anti-�1A antibody from Alomone Laboratories (Jerusalem,
Israel). The �1A and �2/3 subunits were detected in the same
fractions of the sucrose gradient (data not shown).

Since the anti-�2/3 antibody recognized two or three bands
(Fig. 1A), the WGA eluants from the whole brain of the star-
gazer mice or their wild-type littermates were analyzed
through Western blot analysis with two different antibodies
against the �2 or �3 subunits (Fig. 1B). The anti-�2/3 antibody
was raised against a peptide corresponding to the carboxyl-
terminal residues 312–323 of the �2 sequence (3), which is very
similar to the carboxyl-terminal residues 304–315 of the �3

sequence (10). The upper band (38 kDa) was not detected in the
blot of the stargazer mice (Fig. 1B, second lane) by the anti-�2/3

antibody. Furthermore, the anti-�3 antibody, raised against the
peptide representing the residues 273–281 unique to the �3

sequence, recognized only the 34-kDa band in both wild-type
and stargazer mouse blots (Fig. 1B, third and fourth lanes,
respectively). Therefore, we could conclude that the 38-kDa

band represents the �2 subunit and the 34-kDa band repre-
sents the �3 subunit. The identity of the middle band (about
36 kDa) recognized by anti-�2/3 antibody is still under
investigation.

To confirm that the co-sedimentation of the �2 and �3 sub-
units with the �1B subunits was due to a specific interactions
with the Ca2� channel complex, sucrose gradient fractions
(fraction 9–12) containing both �1A/B and �2 subunits (Fig. 1A)
were pooled and subjected to immunoprecipitation analyses as
described under “Experimental Procedures.” Polyclonal anti-�1

antibody recognizing �1A/B subunits of Ca2� channel immuno-
precipitated both the �2 and �3 subunits (Fig. 1C, second lane).
Monoclonal anti-� antibody, which recognizes all Ca2� channel
� subunits, was also able to immunoprecipitate the �2 and �3

subunits (Fig. 1C, third lane). The same blots were probed with
the anti-�2 antibodies to show that the whole neuronal Ca2�

channel complexes were immunoprecipitated. Furthermore,
the �2 band (140 kDa) was detected by immunoprecipitation
with the anti-�2/3 antibody (Fig. 1C, fourth lane). In addition, to
rule out the possibility of nonspecific precipitation by these
antibodies, the same blot was probed with an anti-Na�/K�

ATPase antibody (Affinity Bioreagents, Inc., Golden, CO). The
Na�/K� ATPase was detected in the pooled fraction of sucrose
gradient before immunoprecipitation (Fig. 1C, first lane, In-
put), but was not immunoprecipitated with any of the calcium
channel subunit antibodies (Fig. 1C, second through fourth
lanes). These immunoprecipitation results strongly suggest
that the �2 and �3 subunits bind to neuronal Ca2� channel
complexes composed of �1A/B, �2�, and � subunits.

Taken together, the co-sedimentation and co-immunopre-
cipitation of the �2 and �3 subunits with other neuronal Ca2�

channel subunits constitute what is to our knowledge the first
biochemical evidence that the �2 and �3 subunits are structural
components of neuronal Ca2� channel complexes of the �1B-
and �1A-class.

Effect of the �2 Subunit on the Current Amplitude of Recom-
binant �1B- and �1A-class Ca2� Channels—Having shown that
the �2 subunit is an important part of the neuronal Ca2�

channels, we next explored the effects of this subunit on Ba2�

current through �1�3�2� channels using Xenopus oocytes as an
expression system. Fig. 2A shows representative current traces
from four groups of oocytes injected with different subunit
compositions. Co-expression of �2 or �1 significantly decreased
current amplitude. This effect was consistently observed at
most potentials examined, as shown in Fig. 2B. In the repre-
sentative experiments shown in Fig. 2 (A and B), peak current
amplitude was �1.22 � 0.08 �A (n � 9) in cells expressing
�1B�3�2� and significantly decreased to �0.76 � 0.07 �A (n �
8) and �0.82 � 0.08 �A (n � 9) upon co-expression of �2 (p �
0.001) and �1 (p � 0.003), respectively. Overall, the cells co-
expressing �2 (n � 31) showed 36.8 � 1.6% decrease of peak
current amplitude compared with the cells expressing only
�1B�3�2� (n � 25). A similar effect of the �2 subunit on current
amplitude was observed in oocytes expressing �1A-class Ca2�

channels (Fig. 2, C and D). Fig. 2C shows the current traces
from two groups of oocytes in the absence and presence of �2. In
this case, peak amplitude decreased significantly from �0.40 �
0.04 �A (n � 11) to �0.18 � 0.03 �A (n � 5) in cells expressing
�1A�3�2� and �1A�3�2��2 (p � 0.007), respectively. This effect
was consistently observed in the �40 mV range (Fig. 2D).
Overall, the cells co-expressing �2 (n � 36) showed 39.7 � 5.9%
decrease of peak current amplitude compared with the cells
expressing only �1A�3�2� (n � 25).

Effect of the �2 Subunit on Voltage Dependence of �1B- and
�1A-class Ca2� Channels—Since it could be possible that the
effect of the � subunits on current amplitude is due to a change

FIG. 5. Regulation of current amplitude of neuronal Ca2�

channels by the �2 subunit in various subunit composition. A
and B, comparison of peak current amplitude of �1A- and �1B-class
channels in various combinations of subunits as listed. Asterisks (*) at
�1A�2��2, �1A�3�2��2, or �1B�3�2��2 denote significant differences (p �
0.02) in current amplitude compared with �1A�2�, �1A�3�2�, or
�1B�3�2�, respectively. The number of recorded cells is indicated in
parentheses within the legends representing subunit composition. Data
are representative of at least three independent experiments.
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in the voltage dependence of steady-state activation and/or
inactivation, we next studied the voltage-dependent properties
of activation and inactivation of �1B- and �1A-class Ca2� chan-
nels. Fig. 3 (A and B) shows the steady-state activation of the
recombinant Ca2� channels plotted as a function of the test
potential. Data were fitted with a modified Boltzmann equation
to calculate potentials for half-maximal activation and slope
factors, and the results are summarized in Table I. Although
there was no significant shift of the membrane potential for
half-maximal activation in both classes of channels by �2 co-
expression, the slope factor of the activation curve for �1A�3�2�

channel was affected by �2 co-expression. In addition, the prop-
erties of voltage-dependent inactivation were studied by apply-
ing 2.0-s pre-pulses ranging successively from �100 to 50 mV
in 10-mV voltage steps, followed by a 0.5-s step depolarization
to 0 mV. The averaged data were plotted as a function of
voltage and fitted with a modified Boltzmann equation as
shown in Fig. 3 (A and B), and potentials for half-maximal
inactivation and slope factors are summarized in Table I. Al-
though �2 co-expression did not affect significantly the mem-
brane potential for half-maximal inactivation of the �1�3�2�

channel, the slope factor of the steady state inactivation curve
for �1A�3�2� channel was affected by the co-expression of the �2

subunit (Table I).
Effect of the �2 Subunit on Kinetics of �1B- and �1A-class Ca2�

Channels—The inactivation kinetics of the �1B- and �1A-class
channels was assayed by applying a 2.0-s pulse from a �90 mV
holding potential to various membrane potentials. Inactivation
time constants were then obtained by fitting the decaying
phase of the currents to a two-exponential equation. In Fig. 4 (A
and B), these time constants are plotted as function of the test
potential. The properties of inactivation kinetics were similar
in both �1B- and �1A-class channels in terms of inactivation
rate and the voltage dependence of inactivation rate. Fast
inactivation time constants (�f) in both types of channels were
around 100 ms in a wide range of test potentials. In contrast,
the voltage dependence of slow inactivation in both �1B- and
�1A-class channels showed a U-shape. Similar U-shaped volt-
age dependence of inactivation rate of �1B-class channels was
reported previously (29). Slow inactivation time constants (�s)
were highest at �20 mV and decreased to about 400 ms around
10 mV, and then increased again at voltages above 30 mV.
Overall, inactivation kinetics of neither �1B- nor �1A-class Ca2�

channels was modified by �2 co-expression (Fig. 4, A and B). For
example, at 10 mV (peak current potential), �f values were
61.80 � 1.85 ms (n � 7) and 62.33 � 2.33 ms (n � 6), and �s

473.20 � 19.09 ms (n � 7) and 469.00 � 21.31 ms (n � 6) in
�1B�3�2� and �1B�3�2��2 channels, respectively (Table I).

Similarly, the effects of the �2 subunit on activation kinetics
were analyzed by comparing the activation time constant (�act)
in a series of test potentials (Fig. 4C) ranging from �20 to �30
mV. Time constants were measured by fitting the rising phase
of current to a single-exponential equation. As illustrated in
Fig. 4C, the activation of currents was significantly decelerated
by �2 co-expression at negative potentials (see also Table I).
The differences in activation at a test potential of �10 mV are
depicted in Fig. 4D using representative normalized current
traces from a group of oocytes expressing �1B-class channels in
the absence and presence of the � subunits. These traces clearly
illustrate that the rising phase of the currents in the presence
of the � subunits activate slower than the currents recorded in
oocytes expressing only �1B�3�2�. Consistent with this, at �10
mV �act values were 2.43 � 0.07 ms (n � 9) and 2.98 � 0.11 ms
(n � 8) in �1B�3�2� and �1B�3�2��2 channels, respectively (p �
0.014). The activation kinetics of �1A-class channel was ana-
lyzed similarly; however, in this case �2 co-expression did not

change activation kinetics (data not shown).
The Inhibitory Effect of the �2 Subunit Is Dependent on the

Co-expression of the �2� Subunit—To investigate the mecha-
nism of the �2 inhibitory effect on current amplitude, we ana-
lyzed the peak currents through �1A-class Ca2� channel in
various combinations of auxiliary subunits in the presence or
absence of the �2 subunit (Fig. 5A). The amount of cRNA
injected for the experiment presented in Fig. 5A was much
higher than that of the other experiments to obtain a better
expression of �1A subunits without other auxiliary subunits.
The current amplitude of �1A channels was not significantly
modified by the �2 co-expression; current amplitude of �1A and
�1A�2 channels were �37 � 2.2 nA (n � 6) and �33 � 2.8 nA
(n � 6), respectively. In contrast, �2 co-expression decreased
the current amplitude of �1A channels when the �2� subunit
was present. The current amplitude decreased from �99 � 1.1
nA (n � 13) in �1A�2� channels to �37 � 1.1 nA (n � 6) in
�1A�2��2 channels (p � 0.018). Interestingly, the current am-
plitude of �1A�3 channel was not affected by �2 co-expression;
the current amplitude of �1A�3 and �1A�3�2 channels was
�560 � 42 nA (n � 6) and �570 � 40 nA (n � 12), respectively.
However, in the �1A�3�2� channels, the current amplitude
significantly decreased from �6111 � 270 nA (n � 8) to
�4357 � 328 nA (n � 6) by �2 co-expression (p � 0.02).

Similarly, a current amplitude analysis performed in the
�1B-class Ca2� channels also showed a significant inhibitory
effect by the �2 subunit only when �2� was co-expressed (Fig.
5B). The current amplitude of �1B�3 channels was not affected
by �2 co-expression; the current amplitude of �1B�3 and
�1B�3�2 channels was �141 � 9.1 nA (n � 14) and �123 � 11
nA (n � 8), respectively. On the other hand, in the �1B�3�2�
channels, the current amplitude significantly decreased from
�900 � 73 nA (n � 12) to �613 � 48 nA (n � 8) by �2

co-expression (p � 0.02). Therefore, it seems that the inhibitory
effect of the �2 subunits on neuronal Ca2� channel current
amplitude is dependent on the �2� co-expression.

DISCUSSION

Interaction of the �2 Subunit with the Neuronal Ca2� Chan-
nel Complex—In this study, the association of the �2 subunit
with neuronal Ca2� channel complexes was analyzed through
sucrose density gradient fractionation and immunoprecipita-
tion. Both biochemical analyses consistently demonstrated that
the �2 subunits are associated with neuronal Ca2� channels
(�1B- and �1A-class). In addition, the biochemical analyses in
this study also showed, for the first time, that the protein
expression of the �2 subunit is totally absent in the brain of the
stargazer mouse and that the �3 subunit is also associated with
the neuronal Ca2� channels.

Our biochemical and biophysical data strongly suggest that �2

is an auxiliary subunit of neuronal Ca2� channels like the � and
�2� subunits. As shown in Fig. 1, the �2 association with neuronal
Ca2� channels was confirmed by both co-sedimentation and co-
immunoprecipitation of the �2 subunit with the other compo-
nents of neuronal Ca2� channels. Additionally, our biophysical
studies suggest an inhibitory role for the �2 subunit on neuronal
Ca2� channel activity. This is consistent with a recent patch
clamp study in brain slices of the stargazer mouse that showed
the current amplitude of voltage-activated Ca2� channel in
thalamocortical relay neurons is significantly increased (30).
Taken together, these data strongly suggest that the �2 subunit
is a component of neuronal Ca2� channels in vivo.

Interestingly, another recent study by Chen et al. (12) sug-
gested that the �2 subunit is involved in the regulation of
synaptic targeting/clustering of AMPA receptors. This raises
an intriguing possibility that the �2 subunit is involved not only
in Ca2� current modulation but also in AMPA receptor traf-
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ficking. However, Chen et al. showed no significant change of
the Ca2� channel current in the isolated cerebellar granule
cells between the stargazer and wild-type mice. One possible
explanation for the unaltered Ca2� channel current could be
the compensation for the loss of �2 by other � isoforms. Con-
sistent with this possibility, five � isoforms have been reported
(3, 10, 11, 26, 31). Furthermore, it has been demonstrated that
the loss of �4 subunit did not cause any significant change in
the Ca2� channel current of Purkinje neurons from lethargic
mouse, due to increased steady-state association of �1 subunit
with the remaining �1–3 isoforms (32). Similar functional com-
pensation might occur in the Ca2� channels of the cerebellar
granule cells of the stargazer mouse.

In the sucrose gradient analysis, the �2� subunit predomi-
nantly sedimented in fractions 9–12, where all other subunits
sedimented. However, a peak of �2� was also seen in earlier
fractions (Fig. 1A). This might represent a pool of �2� that
dissociates from the Ca2� channel complex during the purifi-
cation process.

The Modulation of Neuronal Ca2� Channels by the �2 Sub-
unit—The electrophysiological analysis in this study brought
out two major points about the modulation of neuronal Ca2�

channels by the �2 subunit. First, the main function of the �2

subunit on neuronal Ca2� channels seems to be an inhibitory
effect on functional activity of these channels. There were
strong and consistent inhibitory effects of �2 on current ampli-
tude (37–40%) through all of our experiments (Figs. 2 and 5).
The activation kinetics of the �1B-class Ca2� channel was also
significantly decelerated by �2 co-expression (Fig. 4, C and D).
Consistent with our finding, the patch clamp studies of the
stargazer mouse showed 40% decrease of current amplitude of
high voltage-activated Ca2� channels (30). Moreover, recent
studies of �1 null mice reported an increase of current ampli-
tude of Ca2� channel as the main alteration after �1 gene
ablation in skeletal muscle (33, 34). In addition, the consistent
�2 inhibitory effect in vitro and in vivo suggests that the down-
regulation of neuronal Ca2� channel activity by the �2 subunit
may be important for the prevention of neuronal hyperexcit-
ability that has been suggested as a mechanism of epilepsy in
the stargazer mouse.

Second, our results suggest that the inhibitory effect of �2 on
current amplitude depends on the co-expression of the �2�

subunit. The experimental results in Figs. 2 and 4 suggest that
�2 might counteract the �2� effects on neuronal Ca2� channels.
The increase in current amplitude induced by �2� was reversed
by �2 co-expression (Fig. 2, A and B). The acceleration of acti-
vation kinetics by �2� was also diminished by �2 co-expression
(Fig. 4 (C and D) and Table I). Finally, data in Fig. 5 strongly
suggest that the �2 subunit antagonizes the modulatory effect
of �2� on current amplitude of neuronal Ca2� channels. Al-
though the mechanism underlying the �2�-dependent inhibi-
tory effect of the �2 subunit is not clear, one of the studies in the
�1 null mice suggested that the observed Ca2� channel current
increase was due to the increase in channel open probability
rather than an increase in the total number of channel and/or
single channel conductance (33). Since the �2� subunit is able
to increase the open probability of Ca2� channels (35), it is
likely that the �2 subunit counteracts the effects of �2� on the
open probability of Ca2� channels and thus the Ca2� channel
current amplitude. The antagonism between �2� and � could be
involved in the fine-tuning of Ca2� channel functional activity.
In addition, the �2� dependence of the �2 inhibitory effect could
eliminate the possibility of nonspecific inhibition of �2 on the
expression of neuronal Ca2� channels in our experiments. The
recombinant Ca2� channels without �2� did not show signifi-

cant decrease of current amplitude by co-expression of the �2

subunit (Fig. 5).
Previously, Letts et al. (3) and Klugbauer et al. (10) reported

that �2 co-expression shifted the voltage dependence of steady-
state inactivation to more negative potentials but had no effect
on the current amplitude of �1A��2� Ca2� channels expressed
in baby hamster kidney and HEK293 cells, respectively. It is
not clear why there is this difference of the �2 effects on Ca2�

channels between the previous studies and this report. How-
ever, these inconsistencies could be associated to differences in
the combination of subunits employed, the expression level of
endogenous and exogenous Ca2� channel subunits, the exper-
imental setup for electrophysiological recording, and/or partic-
ular physiological conditions such as the phosphorylation sta-
tus of the channels.

The Modulation of Ca2� Channels by the �1 Subunit—Inter-
estingly, the �1 subunit exerted a modulatory effect similar to
that of �2 on neuronal Ca2� channels despite its muscle-specific
expression and significant primary sequence divergence be-
tween the two isoforms. The �1 subunit decreased current
amplitude of both neuronal �1B-class (Fig. 2, A and B) and
�1A-class channels (data not shown), and modulated the acti-
vation kinetics of �1B-class channels (Fig. 4 (C and D) and
Table I). Similarly, co-expression of �1 significantly decreased
the current amplitude of �1C�1�2� channels in Xenopus oocytes
(5). Likewise, as mentioned above, recent electrophysiological
studies showed that the current amplitude of skeletal muscle
Ca2� channel (�1S-class) is significantly increased in the �1 null
mice (33, 34). Taken together, these results suggest that the �1

subunit could exert inhibitory effect not only on �1S- but also on
other Ca2� channels including those of the �1A-, �1B-, and
�1C-class. However, there have been controversial reports re-
garding the �1 function. Depending on the subunit composition,
�1 co-expression increased or decreased the current amplitude
of �1C- or �1A-class channels expressed in oocytes or HEK 293
cells (4–6, 9). The changes in steady-state activation by �1

co-expression also varied in �1C-class channels (5, 6, 9). The �1

co-expression caused a negative shift of steady-state inactiva-
tion curves of �1C-class channels in some studies (5, 7, 9).

In summary, our study demonstrates the association of the
�2 subunit with the neuronal Ca2� channel complex in vivo and
indicates an inhibitory function for the �2 subunit.
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