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Recent studies have confirmed several predictions concerning the structure

and possible function of dystrophin, including a direct interaction with

F-actin and an indirect interaction with laminin via linkage through a

transmembrane protein complex. The results of the past year support a

role for dystrophin in linking the actin cytoskeleton with the extracellular

matrix in striated muscle, but they have not explained its function in other
tissues.
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Introduction

In the process of dissecting Duchenne muscular dys-
trophy, scientists have identified novel constituents of
the membrane cytoskeleton which are vital to normal
cell function. Identification and characterization of the
Duchenne muscular dystrophy gene has rapidly led to
understanding how defects in the gene correlate with the
absence or abnormality of the protein product, named
dystrophin (reviewed in [1]). These findings have led
to intense efforts to develop gene transfer therapies as
a method of dystrophin replacement in dystrophic mus-
cle [2+*3¢¢]. However, until recently, speculation on the
function of dystrophin has largely been based on its pre-
dicted primary structure as expressed in skeletal muscle.
Here, we review recent studies of dystrophin which ex-
amined its structure and cellular location in various tis-
sues as well as its interactions with other cell constituents,
These data reasonably support a role for skeletal mus-
cle dystrophin in stabilizing the sarcolemmal membrane.
They further suggest that, like ankyrin [4], different do-
mains of dystrophin may serve as modules for differential
protein recognition, to allow modification of dystrophin
function in non-muscle tissues.

The structure of dystrophin

Dystrophin is a large protein of 427 kD. Based on its de-
duced primary structure, dystrophin was originally pre-
dicted to consist of four distinct regions, dominated by
a large rod-shaped domain composed of 24 spectrin-
like repeats with an overall length of 125nm [5]. The
large rod-shaped domain of dystrophin is flanked on
its amino terminus by 240 amino acids with high homol-
ogy to the actin-binding domains of a-actinin, spectrin
and Dictyostelium actin-binding protein 120 [5-7]. Im-
mediately carboxyl-terminal to the rod-shaped domain
of dystrophin is a cysteine-rich region with significant
homology to a domain of Dictyostelium a-actinin that

contains two Ca2* -binding sites. However, this putative
Ca?*-binding domain is thought to be non-functional in
skeletal muscle dystrophin [1]. The last carboxyl-termi-
nal 420 amino acids comprise the fourth distinct domain
of dystrophin and exhibit no homology with any known
sequence.

Recent characterization of the Duchenne muscular dys-
trophy gene has revealed a number of dystrophin iso-
forms which differ from the structure described above.
In addition to alternatively spliced carboxyl-terminal iso-
forms [8], distinct isoforms of dystrophin lacking the
amino-terminal and large rod-shaped domains have been
reported [9+#,10%¢,11]. These novel dystrophin isoforms
are expressed at high levels in some non-muscle tis-
sues [10e%,11,12] in contrast to full-length dystrophin,
which is expressed predominantly in muscle and at much
lower levels in brain [1]. An autosomal homologue of the
Duchenne muscular dystrophy gene has also been identi-
fied [13]. Information available thus far indicates that the
autosomal gene product, known as dystrophin-related
protein [14], is 80 % homologous with the cysteine-rich
and carboxyl-terminal domains of skeletal muscle dys-
trophin [13]. Dystrophin-related protein is of similar size
to dystrophin [14,15} and ubiquitously expressed [16].
Taken together, these results suggest that dystrophin is a
diverse family of proteins expressed in all tissues.

The cellular location of dystrophin

Numerous immunocytochemical studies have localized
skeletal muscle dystrophin to the cytoplasmic face of the
sarcolemma, including the neuromuscular and myotendi-
nous junctions [17¢,18*¢]. In comparison with other sar-
colemmal proteins, the relative abundance of dystrophin
(5%) is similar to the density of spectrin in brain mem-
branes, suggesting that dystrophin is a major structural el-
ement of the subsarcolemmal cytoskeletal network [19°].
These results seem to imply that skeletal muscle dys-
trophin is involved in stabilizing the plasma membrane
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from structural distortion during contraction. However,
recent immunohistochemical studies have demonstrated
that the uniform distribution for dystrophin in skeletal
muscle does not hold true in other tissues. In cardiac and
smooth muscle, dystrophin appears to be absent from
the regions of the membrane which overlay adherens
junctions [17+]. The localization of dystrophin to post-
synaptic membrane specializations in the mammalian
central nervous system [20] and its polarized distribu-
tion in the Torpedo electric organ membrane [219,22,23]
suggest that dystrophin may fulfill different roles in non-
muscle tissues. [n addition, dystrophin-related protein is
largely restricted to myotendinous and neuromuscular
junctions in skeletal muscle [15,24,25], further demon-
strating that proteins in the dystrophin family play varied
roles even within the same cell.

Membrane interactions of dystrophin

Extraction of dystrophin from membranes requires de-
tergents or treatment with strong alkali (pH11) [19¢],
suggesting that its mechanism of interaction with the
membrane is different than that for spectrin or a-actinin,
which are readily extracted by relatively mild changes in
ionic environment. Recently, it was demonstrated that
skeletal muscle dystrophin is tightly associated with an
oligomeric complex of six sarcolemmal proteins, four
of which are glycosylated [26-28]. Further characteri-
zation of the purified dystrophin—glycoprotein complex
suggested that dystrophin and a 59kD associated pro-
tein are cytoskeletal elements tightly linked to a highly
glycosylated, 156 kD extracellular glycoprotein through a
complex of 50, 43, 35 and 25 kD transmembrane proteins
[29,30%*]. Cloning of the 43 kD transmembrane compo-
nent of the dystrophin—glycoprotein complex revealed
that it is part of a larger precursor polypeptide which
is post-translationally processed into both the 43 kD and
the 156kD dystrophin-associated glycoproteins [31+].
The sequence of the 156kD dystrophin-associated gly-
coprotein, dystroglycan, suggests that the core protein
is 57kD in size with a signal sequence but no trans-
membrane domain [31*+]. This prediction supports the
biochemical data [30+*] which indicate that the 156kD
dystrophin-associated glycoprotein is extensively glycosy-
lated and extracellular. Although they share no sequence
homology, the processing of the 43/156 dystrophin-as-
sociated glycoprotein precursor is similar to that of the
human immunodeficiency virus type 1 (HIV-1) envelope
protein. The HIV-1 envelope protein is translated as a
160kD glycoprotein and subsequently cleaved to 120 kD
(50% carbohydrate) extracellular and 41 kD transmem-
brane glycoproteins [32]. Interestingly, cell necrosis as a
result of HIV-1 infection involves membrane auto-fusion
or the formation of giant multinucleate cells (an integral
step in skeletal muscle differentiation), and both of these
processes are mediated by the HIV-1 envelope proteins
(32].

In support of its proposed extracellular location [30s¢],
dystroglycan was shown to specifically bind laminin

[31¢*], suggesting that one function of the skeletal mus-
cle dystrophin—glycoprotein complex is to link the sar-
colemmal membrane with the extracellular matrix (Fig.
1). In Duchenne muscular dystrophy, the loss of this
linkage resulting from the deficiency of the dystrophin-
associated proteins [33¢,34¢] could make muscle fibers
susceptible to necrosis by rendering the sarcolemmal
membrane more prone to injury [35¢,36¢], or by alter-
ing specific calcium regulatory mechanisms [37+]. The
specific deficiency of the 50 kD dystrophin-associated gly-
coprotein in skeletal muscle biopsies from patients with
a form of autosomal-recessive muscular dystrophy [38¢]
further suggests that this linkage can also be disrupted
independently of dystrophin.

The domains of dystrophin which interact with the
plasma membrane and the dystrophin-associated pro-
teins have recently been identified. The lack of significant
homology with proteins of known function led to spec-
ulation that the last carboxyl-terminal 420 amino acids
may be involved in the interaction of dystrophin with the
sarcolemmal membrane [S]. Immunogold labeling stud-
ies [39] with an antibody against the extreme carboxyl
terminus of dystrophin indicate that the carboxyl-ter-
minal domain is closely apposed or inserted into the
plasma membrane of skeletal muscle. Recently, Suzuki
et al [40**] demonstrated that a dystrophin fragment
corresponding to the cysteine-rich domain and the first
half of the carboxyl-terminal domain remained bound to
the glycoprotein complex after limited calpain digestion
of the skeletal muscle dystrophin—glycoprotein complex
[40e*]. Furthermore, the cysteine-rich and carboxyl-ter-
minal domains of Torpedo electric organ dystrophin lack
only the carboxyl-terminal 13 amino acids present on
the predominant skeletal muscle isoform of dystrophin
[21¢], yet Torpedo dystrophin does not appear to as-
sociate with any glycosylated constituents [41¢]. On the
other hand, patients clinically diagnosed with Duchenne
muscular dystrophy have recently been shown to ex-
press a truncated dystrophin lacking the cysteine-rich
and carboxyl-terminal domains which properly localizes
to the sarcolemmal membrane [42—44]. While the sever-
ity of the patients’ clinical features illustrates the essential
role of these domains for normal dystrophin function,
the localization results suggest that the cysteine-rich and
carboxyl-terminal domains are not solely responsible for
targeting dystrophin to the sarcolemmal membrane. Im-
plication of the four spectrin-like repeats of a-actinin in
binding the B; integrin subunit led to the suggestion that
the multiple-repeat domain of dystrophin may interact
with the sarcolemma through an integrin [45]. While
asP; integrin has been observed to co-distribute with
dystrophin in chick embryonic myotubes [46], there is
currently no evidence for a direct interaction between
integrin and dystrophin. Furthermore, expression of a
dystrophin construct lacking 16 of 24 multiple repeats
of the rod-like domain of dystrophin results in cor-
rect localization of the truncated dystrophin to the sar-
colemmal membrane [3¢¢]. Alternatively, dystrophin may
also receive localization cues through interactions of the
amino-terminal domain with the membrane cytoskele-
ton. The latter hypothesis is attractive in light of recent
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Fig. 1. Hypothetical model of the skeletal muscle dystrophin—glycoprotein complex. Adapted from [30e¢].

demonstrations of F-actin binding to skeletal muscle dys-
trophin (see below) and implication of the actin-based
cytoskeleton in the establishment and maintenance of
discrete domains of specific plasma membrane proteins
[47 .

Dystrophin as an F-actin binding protein

Until recently, the role for dystrophin as an actin-bind-
ing protein has largely been speculated from the se-
quence similarities of its amino-terminal domain with
well characterized actin-hinding proteins [5-7]. Hem-
mings et al [48%¢] demonstrated that a chimera com-
posed of the first 233 amino acids of dystrophin and
the last 645 amino acids of smooth muscle o-actinin
localized to actin-containing structures when expressec
in COS cells. In addition, bacterially expressed fusion
proteins corresponding to the putative actin-binding do-
mains of dystrophin have been shown to co-sediment
with F-actin [48¢¢49+]. More recently, the skeletal mus-
cle dystrophin—glycoprotein complex was also observed
1o co-sediment with F-actin (JM Ervasti, KP Campbell,
unpublished data). Nuclear magnetic resonance exper-
iments with synthetic peptides corresponding to defined
regions of the amino-terminal domain of dystrophin pro-
vide evidence for two actin-binding sites on dystrophin
located at amino acids 17-26 and 128-156 [50]. While
these results provide support for a direct interaction be-
tween dystrophin and actin in skeletal muscle, they raise
the issue of what actin-based structures skeletal mus-
cle dystrophin may bind to én vivo. Dystrophin does
not appear to be directly associated with the myofib-
rillar actin filaments [51,52]. However, peripheral actin
filaments emanating from the Z-lines and M-lines of

skeletal muscle myofibers have recently been identified
[53], while y-actin [54] and dystrophin [18++] arc two
of several cytoskeletal proteins which exhibit discrete,
lattice-like organizations comprising a longitudinal ele-
ment and transverse elements coincicdent with the I-bands
and M-lines. The low abundance of y-actin in adult skele-
tal muscle would also favor its interaction with dystrophin
from a stoichtometric point of view. In addition, the re-
cent identification of actin-related proteins in other cell
ypes [55,560] raises the possibility for discovery of a no-
vel actin-like protein in skeletal muscle which specifically
binds dystrophin.

[s actin binding a universal function of dystrophin? Prob-
ably not in light of the observation that dystrophin accu-
mulates in domains of the Torpedo electric organ mem-
brane which are devoid of actin [23]. Tt is even more
difficult to reconcile actin binding as a general function of
dystrophin with recent reports of alternative dystrophin
gene products, which completely lack the amino-termi-
nal actin-binding domain, yet are the predominant iso-
forms in some non-muscle tissues [10++,12]. Perhaps the
cytoskeletal interactions of dystrophin are governed by
important sequence elements located in its amino-termi-
nal and rod-like domains, and it is the variation [13,21¢
or absence [9¢¢,10% 11] of these elements which dictate
the specificity of interaction between dystrophin isoforms
and different cytoskeletal proteins. Such specificity of in-
teraction could explain the observed differences in the
cellular focation of dystrophin [20,21+2223]. Once the
complete sequences are available for dystrophin-related
protein [13] and ZTorpedo dystrophin [21¢], the amino-
terminal and rod-like domains of these two proteins can
be compared with skeletal muscle dystrophin, possibly to
identify sequence elements which may confer cytoskele-
tal specificity.
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Conclusions

The findings of the past year suggest that the function of
dystrophin in skeletal muscle is to link the actin-based
subsarcolemmal cytoskeleton with the extracellular ma-
trix by way of a transmembrane complex of glycopro-
teins. While providing a plausible explanation for the
(dys)function of dystrophin in skeletal muscle, research
over the past year has also revealed the potential for a di-
verse family of dystrophins of varied function. Whatever
the outcome, future studies of dystrophin and its related
and associated proteins are certain to advance and enrich
our basic understanding of the membrane skeleton.
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