486

Subunit Identification and Reconstitution of the
N-Type Ca®" Channel Complex Purified from Brain

Derrick R. Witcher, Michel De Waard, Junshi Sakamoto,
Clara Franzini-Armstrong, Marlon Pragnell, Steven D. Kahl,
Kevin P. Campbell*

Calcium channels play an important role in regulating various neuronal processes, in-
cluding synaptic transmission and cellular plasticity. The N-type calcium channels, which
are sensitive to w-conotoxin, are involved in the control of transmitter release from neurons.
A functional N-type calcium channel complex was purified from rabbit brain. The channel
consists of a 230-kilodalton subunit (a,g) that is tightly associated with a 160-kilodalton
subunit (a,8), a 57-kilodalton subunit (B;), and a 95-kilodalton glycoprotein subunit. The
complex formed a functional calcium channel with the same pharmacological properties
and conductance as those of the native w-conotoxin—sensitive calcium channel in neurons.

In neurons, the calcium influx that triggers
vesicle fusion to the presynaptic membrane
and subsequent neurotransmitter release is
the result of the activation of wvoltage-
sensitive Ca’* channels in the plasma
membrane (1). Using freeze-fracture clec-
tron microscopy, investigators have identi-
fied active zone particles in the presynaptic
membrane that have been proposed to be
voltage-sensitive Ca’* channels (2). These
Ca?* channels may be the antigen or may
be associated with the antigen recognized
by pathogenic autoantibodies in small cell
lung carcinoma involved in Lambert-Eaton
myasthenic syndrome (3). The N-type
Ca** channels are distinguished from L-,
T-, and P-type voltage-dependent Ca®*
channels by electrophysiological and phar-
macological properties (4). The peptide
w-conotoxin GVIA, isolated from the snail
Conus geographus, selectively blocks N-type
Ca’* channels, whereas the L-type Ca’*
channels are inhibited by dihydropyridines
(DHPs) (5). The DHP-sensitive Ca®*
channel from skeletal muscle has been pu-
rified and is composed of four subunits: a,
(molecular weight 175 kD), «,d (160 kD),
B (52 kD), and vy (32 kD) (6). At least four
genes encoding Ca** channel «, subunits
from the brain share homology with the ¢,
subunit of the skeletal muscle DHP receptor
(7, 8). Recently, the complementary DNA
(cDNA) encoding the human neuronal
class B «; subunit (7) has been transiently
expressed to produce w-conotoxin-sensi-
tive currents (9). Although there has been
recent progress in molecular biological stud-
ies of brain Ca?* channel subunits (7, 8),
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little is known about the native structure
and function of neuronal Ca?* channels.

We have purified the w-conotoxin re-
ceptor (N-type Ca?* channel) from digito-
nin-solubilized rabbit brain membranes by
heparin chromatography, immunoaffinity
chromatography, and sucrose density gradi-
ent centrifugation (10). The receptor com-
plex migrated as a single peak on the
sucrose density gradient (Fig. 1A) and con-
tained four subunits of molecular weight
230 kD, 140 kD (reduced), 95 kD, and 57
kD, all of which comigrated with the peak
of binding to '**I-labeled w-conotoxin (Fig.
IB) and were in a stoichiometric ratio of
1:1.0:0.9:1.3. In more than 70 purifica-
tions, these four subunits were consistently
observed.

The isolated w-conotoxin receptors ap-
peared as globular complexes (Fig. 1C).
Most of the complexes were within a nar-
row size range, indicating the purity of the
preparation. The approximate diameter was
16 nm, which is similar to the size of active
zone particles in the presynaptic mem-
branes, as visualized by freeze-fracture elec-
tron microscopy (2). The few larger com-
plexes in each image were possibly aggre-
gates of receptors.

Rabbit brain membranes bound '*I-la-
beled w-conotoxin with a dissociation con-
stant (K;) of 0.08 nM, in agreement with
other reports (11, 12), and a maximum bind-
ing capacity (B,,,,) of 305 fmol per milligram
of protein. A 2400-fold purification of the
receptor was achieved, yielding 60 pg of
purified N-type Ca’* channel. The purified
receptor bound '*I-labeled w-conotoxin with
a K, of 0.06 nM and a B___ of 423 pmol/mg
(Fig. 1D); however, it did not bind
[*HJPN200-110, a specific blocker of L-type
Ca®* channels. Only a single binding site was
observed for w-conotoxin both in brain mem-
branes and for the purified receptor.

To confirm the subunit composition of
the receptor, we generated sheep antibodies
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against the purified receptor complex. An-
tibodies were produced against each subunit
of the purified receptor. Immunoblot anal-
ysis of the fractions obtained from the
purification of the w-conotoxin receptor
demonstrated thar all four subunits copuri-
fied with '?°I-labeled w-conotoxin binding
activity. Analysis of the sucrose density
gradient fractions (13) showed that all four
subunits comigrated on the sucrose gradient
and were immunologically distinct.

To compare the subunit composition of
the w-conotoxin receptor channel to that of
the neuronal DHP receptor, we labeled rabbit
brain membranes with either [PH]PN200-110
or 'PLlabeled w-conotoxin and solubilized
and immunoprecipitated them with affinity-
purified antibodies to the various subunits of
the w-conotoxin receptor (14). Affinity-puri-
fied antibodies to the w-conotoxin receptor o
and 95K subunits immunoprecipitated 79 and
74% of the '*’I-labeled w-conotoxin binding
sites, respectively, and did not precipitate any
significant amount of the brain DHP receptor
(Table 1). Polyclonal antibodies against the B
subunit and monoclonal antibody VD2, each
immunoprecipitated 84% of the '®[-labeled
w-conotoxin binding sites. They also immu-
noprecipitated 19 and 68% of the ["HJPN200-
110 binding sites, respectively (Table 1). This
suggests that the B subunit of the two brain
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receptors share similar epitopes, whereas the
o, and 95K subunits of the w-conotoxin
receptor appear to be unique.

Immunoblot analysis showed that affinity-
purified polyclonal antibodies to the ; and
95K subunits recognized only the brain
w-conotoxin receptor and not the skeletal
muscle DHP receptor (15) (Fig. 2). Also,
polyclonal antibodies to the B subunit of the
w-conotoxin receptor weakly identified the B,
subunit of the skeletal muscle DHP receptor.
These results, along with the immunoprecip-
itation data, suggest that the B subunit of the
w-conotoxin receptor is different from the B
subunit of the brain and skeletal muscle DHP
receptor. Affinity-purified polyclonal antibod-
ies to the w-conotoxin receptor @, subunit
identified the e, subunit of both the w-cono-
toxin receptor and skeletal muscle DHP re-
ceptor (16) (Fig. 2). The «, subunits of both
receptors have been identified as glycopro-
teins that bind wheat germ agglutinin
(WGA) (Fig. 2). By treating the w-conotoxin
receptor complex with N-glycosidase F (16),
we demonstrated that the o, subunit as well as
the 95K subunit contained N-linked sugars.
Thus, the purified w-conotoxin receptor con-
sists of an «}, @,8, B, and also a 95K subunit.

Because genes encoding different o, and
subunits exist in neuronal tissue, it was im-
portant to further identify the subtype of «,

i/

B
70
5
= 60 |
g
T 50f
235
%540_
3
£3 aof
§E 20f
2
c 1of
[=]
© 9

2 4 6 6 10 12 14 16 18 20

Fractions
D
8.0
6.0
8
3 40}
c
=
]
m
2.0}
06700 200 300 400 500

Bound m-conotoxin (pmol/mg)

Fig. 1. Structural characterization of the purified w-conotoxin receptor. (A) Sucrose density gradient
fractions of the purified w-conotoxin receplor stained with Coomassie blue. Molecular weight
markers (in kilodaltons) on left. (B) Distribution of '?%I-labeled w-conotoxin bound to the purified
receptor. (C) Rotary-shadowing electron microscopy of the purified w-conotoxin receptor (25). (D)
Scalchard analysis of '?®I-labeled w-conotoxin binding to the purified receptor (in picomoles per

milligram of protein),
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and B subunits in the receptor complex.
Polyclonal antibodies affinity-purified against
a fusion protein made from the unique intra-
cellular loop between the second and third
transmembrane domains of the cloned class B
, subunit (16) recognized only the «, sub-
unit of the w-conotoxin receptor (Fig. 2).
Affinity-purified sheep polyclonal antibodies
against the B;-specific COOH-terminal fu-
sion protein identified only the w-conotoxin
receptor B subunit (16). However, affinity-
purified antibodies against the NH,-terminal
(3, fusion protein, containing regions homol-
ogous to all B subunits, identified the B
subunits of both the w-conotoxin receptor
and the DHP receptor (Fig. 2).

The w-conotoxin receptor was reconstitut-
ed in phospholipid bilayers (17) made from
the apposition of monolayers at the tips of
patch pipettes (I8) (Fig. 3). Channel activity
showed little voltage dependency under these
experimental conditions (Fig. 3A), a result

Table 1. Immunoprecipitation of w-conotoxin
and neuronal DHP receptor. The percentage of
'25]-labeled w-conotoxin and [*H]PN200-110
immunoprecipitated by various antibodies as
described (714). Values are mean = SD from n
= 3 experiments, except for those marked with
asterisk.

. w-Conotoxin [*H]PN200-
Antibody (%) 110 (%)
Anti-ae, (13) 79.1 = 0.6* 1.7 = 0.7*
Anti-95kD (13) 73722 25 = 1.4
Anti-B (13) 83511 190 = 08
vD2, (10) 83.7+13 682 = 13
No antibody 1.1 +£01 1.1 = 0.1

*From n = 4 experiments.
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Fig. 2. Identification of the w-conotoxin receptor
subunits by immunoblot analysis. Nitrocellulose
transfers of purified w-conotoxin receptor
(CgTxR) and skeletal muscle DHP receptor
(DHPR) were stained with affinity-purified
sheep polyclonal antibodies to the «, subunit
() of the w-conotoxin receptor, affinity-purified
polyclonal antibodies to an «, class B fusion
protein («, ), affinity-purified antibodies to the
a, subunit (e,) of the w-conotoxin receptor, 1
rg of peroxidase-conjugated WGA per milliliter
(WGA), affinity-purified antibodies to the 95-kD
subunit (95K), and affinity-purified antibodies to
the COOH- (B,C) and NH.- (B;N) terminal fu-
sion proteins derived from a B, clone. Molecu-
lar weight markers (in kilodaltons) on left.
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similar to that described from the reconsti-
tution of the skeletal muscle DHP receptor
(19). No channel activity was recorded with
no channels (n = 7), addition of 0.1%
digitonin (n = 4), heat-inactivated channels
(n = 5), or trypsin-digested channels (n =
11). Thus, channel activity was a result of
the incorporation of receptors into the bilay-
er. Moreover, no difference in channel ac-
tivity could be detected whether the chan-
nels were purified with digitonin (n = 43) or
CHAPS (n = 10). The unphosphorylated
purified w-conotoxin receptor complex ex-
hibited a conductance between 14 and 25 pS
in symmetrical 100 mM barium (n = 6),
similar to that of the native N-type Ca®*
channel (20), whereas the phosphorylated
receptor displayed more complex properties.
The channel did not conduct Na*, and Ba
conductance was three times higher than
Ca?* conductance of the channel. When
recording in symmetrical 10 mM Ba, 1 uM
w-conotoxin was required to inhibit the
average unitary current by 100% (n = 3)
(Fig. 3B). Furthermore, no channel activity
was detected when the receptor was prein-
cubated with 5 uM w-conotoxin (n = 10,
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asymmetrical ionic conditions). However,
channel activity was seen in 9 of 10 experi-
ments in similar ionic conditions but in the
absence of the toxin. Finally, the unitary
currents were insensitive to DHP agonist
and antagonist (Fig. 3C). The addition of 1
pM BAY K 8644 or 1 pM nitrendipine did
not significantly affect the single-channel
activity and the average unitary current.
These results, along with the biochemical
data, indicate the absence of DHP-sensitive
channels in the purified receptor preparation
and further confirm the lack of sensitivity of
the w-conotoxin receptor to DHPs.

Our results demonstrate that the w-cono-
toxin receptor complex is the N-type Ca®*
channel and is composed of four immunolog-
ically distinct subunits. Comigration of the
receptor subunits on sucrose gradients and
immunoprecipitation experiments with sub-
unit-specific polyclonal antibodies demon-
strate that the complex is tightly associated.
Recent biochemical studies have suggested
that a few of the proteins that compose the
w-conotoxin receptor may have molecular
weights similar to those of subunits of the
DHP receptor (21). Our data suggest that the
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Fig. 3. Reconstitution of the w-conotoxin receptor into phospholipid bilayers. (A) Control recordings
of channel activity in symmetrical barium condition. Solid line represents the closed state of the
channel. (B) Presence of w-conotoxin inhibits Ba unitary currents. Currents without (=) and 4 min
after addition of (+) 1 pM w-conotoxin into the bath. Top two rows: control recordings at a pipette
voltage of —100 mV: bottom row: leak-subtracted average current (between arrows) of 100
episodes after stepping from 0 to =100 mV. Transients under the arrows are capacitance artifacts.
Other transients between arrows are capacitor feedback resets from the amplifier. (C) Absence of
the effects of DHPs BAY K 8644 (1 M) and nitrendipine (1 M) on barium unitary currents. Top
three rows: individual control recordings without (—) or 1 min after the addition of (+) DHP into the
bath after pulsing the pipette voltage from 0 to 100 mV. Bottom row: leak-subtracted average
current of 400 and 100 episodes for BAY K 8644 and nitrendipine, respectively.
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subunit composition of the w-conotoxin re-
ceptor is similar but distinct from the DHP
receptor. Our results illustrate that the recon-
stituted w-conotoxin receptor forms a Ca’™*
channel with pharmacological properties sim-
ilar to that of the native N-type Ca’* chan-
nel. Finally, it is known that different B
subunits (B,, B,, and B;) modulate the same
«, subunit with different efficiencies in ex-
pression studies (22). We have identified the
B; subunit as a component of the N-type
Ca’* channel complex.
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