Matters Arising

The Naming of Voltage-Gated Calcium Channels

Voltage-gated calcium channels are multisubunit complexes formed of a central channel-forming a, subunit and several regulatory and/or auxiliary subunits which include a β subunit and the disulfide-linked $\alpha_2\delta$ subunit. Depending on the tissue of origin, a fifth subunit, such as the skeletal muscle γ or the neuronal p95, may also form part of the channel complex. Additional subunits may still be discovered. Molecular cloning has greatly expanded the understanding of calcium channel diversity, but confusion remains in the naming of the plethora of genes that encode calcium channel α_1 and β subunits. This is further complicated by the fact that the transcripts of most subunits are subject to alternative splicing, which in some but not all cases, may be tissue specific. Table 1 compares the names of cloned α_1 genes and their mature mRNAs, their major sites of known expression, and their functional correlates as they are perceived today. Table 2 lists β subunit genes splice variants, and some sites of expression.

To simplfy matters, the undersigned propose to use a unified nomenclature based on rules that allow the description of a mature assembled heteromeric channel in terms of an $\alpha_{1x}\beta_n\gamma_n \cdot \alpha_2\delta_n$ complex, where X is a capital letter (S, A, B, C, D, E, etc.) that identifies the genes from which the α_1 subunit originates, and *n* is a number (1, 2, 3, etc.) that identifies the genes from which other calcium channel subunits originate. α_{1s} denotes the α_1 subunit of the skeletal muscle calcium channel, the first of theses channels to be cloned in the laboratory of the late Professor Shosaku Numa. α_{1A} through α_{1E} denote the α_1 subunits cloned subsequently, labeled with an

able 1. Calcium Channel α1 Subunits							
Gene Product							
Consensus	Original Name(s)		Functional Correlates				
Name(s)	if Different	Sites of Expression	Current	Drug Sensitivity of Native Currents			
α15	Skeletal muscle	Skeletal muscle, BC3H1	HVA L type	Sensitive to DHPs, diltiazem and verapamil			
	CaCh1	cells		Insensitive to sub-μM ω-CTx-GVIA and funnel web spider venoms (ω-Δga-IVA_FTX)			
	BI	Brain cerebellum					
U IA	CaCh4	Purkinje and granule cells, kidney,	IIVA Q type:	DHP insensitive			
	rbA	PC12 cells, C cells	HVA P type?	Sensitive to @-Aga-IVA (<10nM) and low sFTX DHP insensitive			
α1в	BIII	Brain, peripheral	HVA N type	Sensitive to $\varpi\text{-CTx-GVIA}$ (100-500 nM) and			
	CaCh5	neurons, PC12 cells,		ω-CTx-MVIIC (>100 nM)			
	rbB	C cells		DHP insensitive			
α1C	Cardiac	Heart, HIT cells, GH3	HVA L type	DHP sensitive			
	Smooth muscle/	cells, brain, aorta, lung, kidney, fibroblasts		Insensitive to low concentrations of			
	CaCh2	PC12 cells, C cells					
	rbC						
α _{1C-a}	CaCh2a	Heart					
	CaCh2-I						
ά1С-р	CaCh2b	Smooth muscle, lung					
	CaCh2-II						
α1C-c	rbC	Brain					
	CaCh2-III						
α1D	CaCh3	Brain, pancreas, HIT	HVA L type	DHP sensitive			
	Neuroendocrine rbD	cells, GH3 cells, PC12 cells, C cells		Reversibly sensitive to ω-CTx-GVIA, ω-Aga-IVA, or FTX			
α _{1E}	CaCh6	Brain, heart, C cells	HVA R type?	Sensitive to low Ni			
	BII			Insensitive to DHPs or ω-CTx-MVIIC.			
	rbE			or to low concentrations of ω-CTx-GVIA, ω-Aga-IVA or sETX			

This table in intended as a guide and refers only to mammalian calcium channels. Not all previously used names are listed. Vertebrate doe-1 and doe-4 α_1 subunits, cloned from the marine ray Discopyge ommata, are orthologs of mammalian α_{1E} and α_{1B} , respectively. HVA and LVA, high and low voltage activated; DHP, dihydrophyridine; ω -CTx-G and ω -CTx-M, ω -conotoxins from marine snails Conus geographus and Conus magus, respectively; Aga, agatoxin (funnel web spider Agelenopsis aperta toxin); sFTX, synthetic funnel web spider toxin. Q-type calcium channel: current in cerebellar granule cells sensitive to ω -CTx-MVIIC but insensitive to DHPs, low ω -CTx-GVIA, and low ω -Aga-IVA; R-type calcium channel: residual in cerebellar granule cells after blocking with DHP, ω -Aga-IVA, ω -CTx-GVIA, and ω -CTx_MVIIC.

Table 2. Calcium Channel β Subunits								
Gene Product	Splice Variant	Other Name(s)	Proven Expression ^a	Component of				
β1	βıa	β1м	Skeletal muscle	DHP receptor				
	β1ь	β182, β2	Brain, heart	?				
	β1c	β181	Brain, heart	?				
β2	β2a	βз	Brain, heart	?				
	β2ь		Brain, heart	?				
	β _{2c}		Brain, heart	?				
βз	?		Brain, heart, aorta	w-CTx receptor				
β4	?		Brain	?				
^a Does not exlude sites of expression.								

empirical terminology developed for the calcium channels from brain, the only tissue in which all of these genes are expressed. The genes encoding regulatory/ auxiliary subunits (β , $\alpha_2\delta$, γ , etc.) are numbered sequentially in approximate order of their discovery. Note that a single $\alpha_2\delta$ gene and mRNA yields two mature subunits, α_2 and δ , which are disulfide linked. Thus, the $\alpha_2\delta_1$ to $\alpha_2\delta_n$, genes are expected to encode a series of disulfide-linked subunit pairs (α_2 and δ) in the mature calcium channel protein.

Splice variants are uniformly denoted by y, a lowercase letter (i.e., α_{1A-a} , α_{1A-b} , β_{1a} , β_{1b} , $\alpha_{2}\delta_{a}$, $\alpha_{2}\delta_{b}$, etc.). If no second gene is known, such as for the $\alpha_{2}\delta$ subunit, the capital letter or numerical subscript is omitted. If no molecular diversity is known, such as for the γ subunit of the skeletal muscle calcium channel, subscripts are omitted. In this nomenclature, the skeletal muscle L-type calcium channel/dihydropyridine receptor has the subunit composition $\alpha_{1s}\beta_{1a}\gamma\alpha_{2}\delta_{a}$.

Signed (alphabetical listing):

Lutz Birnbaumer

Department of Anesthesiology UCLA School of Medicine Los Angeles, California 90024

Kevin P. Campbell

Howard Hughes Medical Institute and Department of Physiology and Biophysics University of Iowa School of Medicine Iowa City, Iowa 52242

William A. Catterall

Department of Pharmacology University of Washington School of Medicine Seattle, Washington 98195

Michael M. Harpold

The Salk Institute

Biotechnology/Industrial Associates, Inc. (SIBIA) La Jolla, California 92037

Franz Hofmann

Institute of Pharmacology and Toxicology Technical University of Munich Munich 40 80802 Federal Republic of Germany

William A. Horne

Department of Molecular and Cellular Physiology Stanford University School of Medicine Stanford, California 94305

Yasuo Mori

Institute of Pharmacology and Cell Biophysics University of Cincinnati School of Medicine Cincinnati, Ohio 45267

Arnold Schwartz

Institute of Pharmacology and Cell Biophysics University of Cincinnati School of Medicine Cincinnati, Ohio 45267

Terry P. Snutch

Departments of Zoology and Neurosciences Biotechnology Laboratory University of British Columbia Vancouver Canada V6T IZ3

Tsutomu Tanabe

Howard Hughes Medical Institute and Department of Cellular and Molecular Physiology Yale University School of Medicine New Haven, Connecticut 06536

Richard W. Tsien

Department of Molecular and Cellular Physiology Stanford University School of Medicine Stanford, California 94305