A common missense mutation in the adhalin gene in three unrelated Brazilian families with a relatively mild form of autosomal recessive limb-girdle muscular dystrophy

M.Rita Passos Bueno*, Eloisa S.Moreira, Mariz Vainzof, Jeffrey Chamberlain1, Suey K.Marie2, Lygia Pereira, Jeanne Akiyama3, Steven L.Roberds4, Kevin P.Campbell4 and Mayana Zatz

Department of Biologia, Instituto de Biociências, 2Faculdade de Medicina e 3Instituto de Fisioterapia, Universidade de São Paulo, Rua do Matão 277, CEP 05509-900 São Paulo SP, Brazil, 1Department of Human Genetics, University of Michigan, Michigan, and 4Howard Hughes Medical Institute and Department of Physiology and Biophysics, University of Iowa, Iowa, USA

Received November 8, 1994; Revised and Accepted April 11, 1995

Autosomal recessive limb-girdle muscular dystrophies (AR LGMD) represent a heterogeneous group of diseases with a wide spectrum of clinical variability, classified phenotypically into two main groups, the most severe forms (Duchenne-like muscular dystrophy, DLMD, or severe childhood autosomal recessive muscular dystrophy, SCARMD) and the milder forms. Four genes causing AR LGMD have been mapped: the 15q (LGMD2a), the 2p (LGMD2b), the 13q locus (LGMD2c) and the adhalin gene on chromosome 17q (LGMD2d). In the present report we have performed linkage analysis with 17q markers in three mild AR LGMD and in four DLMD families with adhalin deficiency and unlinked to 2p, 15q or 13q genes. Linkage was observed only among the mild cases. Patients from these three 17q-linked families showed near or total deficiency of adhalin in muscle biopsies. An identical missense mutation was identified in all three 17q-linked unrelated families. These results indicate that AR LGMD with a mild phenotype is caused by mutations in the adhalin gene. In addition, they demonstrate that there is at least one other locus for DLMD associated with adhalin deficiency.

INTRODUCTION

Autosomal recessive limb-girdle muscular dystrophies (AR LGMD) represent a heterogeneous group of diseases, with a wide spectrum of clinical variability, involving muscles from the pelvic and scapulae girdles without affecting the facial musculature. The rate of progression of the disease is usually highly correlated with the age of onset which may vary from early to late childhood or even adulthood (1,2). The more severe forms, with onset before the age of 5 and loss of ambulation before 16 years old, have been named as ‘Duchenne-like muscular dystrophy (DLMD) or severe childhood autosomal muscular dystrophy, SCARMD’ (3,4).

Two loci associated with the milder forms of AR LGMD have been mapped, one on chromosome 15q (5) and the other on chromosome 2p (5). These results were confirmed in other populations, including Brazilian families (7–9). The 15q-linked LGMD was termed LGMD2a while the 2p-linked form was classified as LGMD2b (10). However, we have verified that some families are not linked to any of these loci, demonstrating the existence of at least one other locus for this disease (8,11).

Linkage analysis using 15q as well as 2p markers have been performed in families with the most severe forms of limb-girdle muscular dystrophies (DLMD). However, none of the Brazilian DLMD families were found to be linked to these loci (12,13 and unpublished data). Ben Othmane et al. (13) linked a more severe phenotype of AR LGMD to chromosome 13q in Tunisian families. This finding has been confirmed in other families from Africa (14,15) and this form has been classified as LGMD2c (10). Only one among the 16 studied Brazilian LGMD families was found to be apparently linked to the 13q gene; however, in contrast to the Tunisian families, the three affected patients from this genealogy have a relatively mild phenotype (11). On the other hand, no evidence of linkage was observed with 13q markers in four DLMD families from different ethnic groups, suggesting the existence of another locus for this severe form of muscular dystrophy (16).

Due to the fact that the AR LGMDs are clinically similar to the dystrophinopathies, that is, the Xp21 Duchenne and Becker muscular dystrophies, it has been hypothesized that the proteins and/or glycoproteins associated with dystrophin could be candidate genes for one or more forms of AR LGMD. Indeed, deficiency of one of these glycoproteins (50 DAG or adhalin) in muscles from patients with the DLMD phenotype has been reported by Matsumara et al. (17). This finding was confirmed by us in six other DLMD Brazilian patients (18). However, none of the families found to be deficient for this protein were linked to the 13q gene (16), suggesting that the gene for adhalin is not on 13q or that deficiency of this glycoprotein could be due to a primary or secondary effect (16,18).

Recently, Roberds et al. (19) mapped the gene encoding adhalin to chromosome 17q and identified point mutations in

*To whom correspondence should be addressed
this gene in patients from one family with an apparently mild phenotype which was previously demonstrated to be adhalin negative (20).

The aims of the present study are to report linkage analysis with 17q markers in three mild AR LGMD and in four DLMD families with adhalin deficiency and unlinked to 2p, 15q or 13q genes. We observed that only the families with a mild phenotype are linked to this locus, which was confirmed by the identification of a missense mutation in the adhalin gene.

RESULTS

Two-point lod scores between D17S1319 and the disease locus for all the seven families are described in Table 1. The families were analysed separately in two groups according to the severity of the disease.

All the four families clinically classified as DLMD showed negative lod scores with the intragenic adhalin marker, suggesting that this is not the gene responsible for this muscular dystrophy in these genealogies, despite the fact that they are adhalin-negative, as previously reported (18).

All the three genealogies with mildly affected patients (pedigrees with haplotypes summarized in Figure 1) showed positive lod scores with the intragenic adhalin marker D17S1319 and/or the flanking markers (Family 7: $Z = 2.43$ and 1.55 at $\theta_{\text{max}} = 0$, respectively for D17S806 and D17S941; Family 16: $Z = 2.55$ and 1.02 at $\theta_{\text{max}} = 0$, respectively for D17S806 and D17S941; Family 30: $Z = 1.01$ at $\theta_{\text{max}} = 0$ for both flanking markers).

To identify possible causative mutations in these families we performed reverse transcription-PCR (RT-PCR) analysis on total RNA prepared from a muscle biopsy of affected member 6 of family 7. Two pairs of primers were used to amplify the entire adhalin mRNA, and both produced normal sized products. Direct sequence analysis of the RT-PCR products from this affected patient identified one missense mutation, a C+T transition at nucleotide 229 [according to the sequence from Roberds et al. (19)], which results in an Arg+Cys substitution (Fig. 2).

The patients from the other two 17q-linked families were also tested at the genomic level for this mutation, and we observed that all the affecteds are homozygous for this same mutation (Fig. 3).

Four patients from the three unrelated 17q-linked families were also tested for adhalin and dystrophin by immunocytochemistry: patient 6 from family 7, patients 19 and 22 from family 16 and patient 5 from family 30. The patients from families 16 and 30 presented a negative pattern for adhalin while in patient 6 from family 7, a partial although very weak
labelling was observed in some fibers (Fig. 4). A positive dystrophin pattern was observed in all these cases (Fig. 4).

DISCUSSION

The present results confirm that families linked to the adhalin gene may have a mild form of limb-girdle muscular dystrophy, as previously suggested (19).

Adhalin is a muscle-specific glycoprotein having a single transmembrane domain, in which the N-terminal 290 amino acids are extracellular (21). The mutation reported here, a substitution of Arg→Cys at residue 77 (R77C) may therefore change the secondary and/or tertiary structural conformation of adhalin, interfering with the adhalin extracellular functions. In addition, an important finding is that dystrophin is apparently normal in these 17q-linked patients, suggesting that this glycoprotein is not critical for the maintenance of the dystrophin-associated complex as originally reported (21).

Interestingly, the affected patients from the three unrelated 17q-linked families have different haplotypes, suggesting different origins for this mutation. These results were unexpected, since point mutations among unrelated affecteds from the same population in other autosomal recessive diseases, such as cystic fibrosis (22,23) and phenylketonuria (24), typically share the same haplotype.

The clinical progression of the disease in the 17q-linked patients is relatively mild, although there is a great variability within and between families, even among those carrying the same genotype. Patients homozygous for mutation R77C from families 16 and 30 showed a negative adhalin pattern through immunocytochemistry; however, the patients from family 16 have a more severe clinical course. In family 16, one patient
with support. In family 30, individual 5, currently aged 25, had disease onset at age 16 and currently has severe weakness both in the upper and lower limbs. In contrast, her sister (4), currently 26 years old, had disease onset only at the age of 23 and is very mildly affected, being able to perform all her functional abilities (walking and climbing stairs) without support. Patients from family 7 also have a very mild clinical course, comparable to patient 4 from family 30, even though some traces of adhalin were observed in one of the tested patients from this family. Although more individuals should be studied, these preliminary results suggest that there is not a direct correlation between levels of adhalin and severity of the disease.

The negative lod scores for the 17q markers in the Brazilian DLMD families indicate that there is at least one other locus for this form of muscular dystrophy. The adhalin negative pattern in the affected patients from these families have been previously described (18). These findings support our previous suggestion that deficiency of adhalin in patients with the severe phenotype may be a secondary effect and indicate that other important proteins associated with adhalin and/or dystrophin might be altered in these forms of muscular dystrophy.

MATERIALS AND METHODS

Families

Seven families with AR LGMD patients (ascertained at the Centro de Miotopias, Universidade de Sao Paulo) have been included in the present analysis. Linkage analysis for 17q markers in two of these families (7 and 16) have been previously reported (11). All of them have been excluded for the 2p, 13q and 15q genes (11 and unpublished data). Diagnosis was based on clinical examination of at least one affected person from each genealogy, clinical course of the disease, family history, elevated serum creatine-kinase levels and assessment of dystrophin through IF and Western blot in muscle biopsies. Patients were classified as: (i) mild LGMD when the onset of the disease occurred during or near the end of the first decade of life and loss of ambulation at or after 16 years old; (ii) severe DLMD or SCARMD when loss of ambulation occurred before age 16 in at least one patient in each genealogy (3,4,11).

Three (families 7, 16 and 30) out of the seven families have a relatively mild phenotype and the other four have the more severe clinical course and have been classified as DLMD (families 3, 26, 43 and 55). Consanguinity was observed in four families (16, 26, 30 and 43).

Methods

DNA was extracted from whole blood, according to the method of Miller et al. (25). Linkage analysis was done using the intragenic adhalin microsatellite marker (D17S1319); in cases in which this marker was not informative, the closest available markers for this region were then used (3,4,11). These preliminary results suggest that there is not a direct correlation between levels of adhalin and severity of the disease.

REFERENCES

