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Dystroglycan: an extracellular matrix receptor linked to the

cytoskeleton

Michael D Henry™ and Kevin P Campbellf

Dystroglycan provides a crucial linkage between the
cytoskeleton and the basement membrane for skeletal
muscle celis. Disruption of this linkage leads to various
forms of muscular dystrophy. Significant recent advances
in understanding the structure and function of dystroglycan
include detailed in vitro and in vivo analyses of its binding
partners in muscle, an examination of its function at the
neuromuscular junction, and emerging evidence of its roles
in nonmuscle tissues.
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Abbreviations

AChR  acetylcholine receptor

DGC dystrophin—glycoprotein complex
ECM extracellular matrix

GAG glycosaminoglycan

MASC myotube-associated specificity component
MuSK  muscle-specific kinase

NMJ neuromuscular junction

Introduction

Dystroglycan was originally identified in skeletal muscle
as a component of the dystrophin—glycoprotein complex
(DGC)—a collection of tightly associated proteins that
anchors dystrophin to the sarcolemma [1,2]. Molecular
cloning of the dystroglycan gene revealed that dystrogly-
can consists of a 156kDa extracellular laminin-binding
subunit (o-dystroglycan) plus a 43kDa transmembrane
subunit (B-dystroglycan) [3]. Now, dystroglycan is thought
to form a continuous link between laminin-2, in the ex-
tracellular matrix (ECM), and dystrophin, in the cyroskel-
eton [4,5°°]. Current thinking holds that this dystroglycan-
mediated connection between the ECM and the cy-
toskeleton contributes to the structural integrity of the
sarcolemma. Disruption of the DGC appears to underlie
many forms of muscular dystrophy [6]. Recent studies
have shown that dystroglycan is an agrin receptor,
suggesting that it may also play a role in nerve-muscle
synapse formation [7-10]. Dystroglycan is expressed
in a number of nonmuscle tissues, indicating that its
function is not restricted to muscle [3,11]. In this review,
we will examine the recent advances in understanding
dystroglycan structure and function both in muscle, where
it has been most extensively studied, and in nonmuscle

tissues, where exciting new avenues of research are
opening up.

Dystroglycan structure

The primary sequences of dystroglycan from several
organisms are presented in Figure 1. Comparison of the
available sequences reveals remarkable structural conser-
vation among rather evolutionarily divergent organisms.
Dystroglycan exists as a noncovalently linked complex of
o- and fB-glycoprotein subunits [7,12], which arise from
a single mRNA transcript encoded by a single gene
[3,11,13]. In humans, this gene maps to chromosome
3p2l, a region thought to contain a tumor suppressor
gene involved in several types of cancer {11]. - and
B-dystroglycan subunits are probably post-translationally
processed forms of a precursor polypeptide. Recent
studies have identified Ser654 as the amino terminus of
B-dystroglycan [14°,15].

Although the primary sequence of a-dystroglycan predicts
a 72kDa polypeptide, a-dystroglycan isolated from differ-
ent tissue sources shows considerable size heterogeneity.
For example, o-dystroglycan isolated from mammalian
skeletal muscle and brain migrates in SDS-polyacrylamide
gels as diffuse bands of around 156kDa and 120kDa,
respectively [3], whereas that from Torpedo californica
electroplax is ~190 kDa in size [7]. a-dystroglycan contains
both Asn- and Ser/Thr-linked carbohydrates [16] and
deglycosylation abolishes its laminin-binding activity iz
vitro [17,18]. The possibility that nearly two thirds of
the weight of o-dystroglycan might be carbohydrate led
to initial speculation that it could be a proteoglycan. In
support of this idea, C2C12 muscle cell lines deficient
in glycosaminoglycan (GAG) biosynthesis express a lower
molecular weight form of a-dystroglycan with impaired
agrin-binding properties [8-10]. Smalheiser and Kim [14°]
have recently re-examined the carbohydrate modifications
of a-dystroglycan. Their work suggests that brain-derived
a-dystroglycan possesses a mucin-like carbohydrate struc-
ture. One way to reconcile these different ideas is to
suggest that o-dystroglycan has both proteoglycan and
mucin-like characteristics and that these properties might
be modulated in a functionally important, tissue-specific
manner. The current confusion over the nature of
dystroglycan’s carbohydrate moieties emphasizes the need
for more detailed studies.

A high resolution understanding of dystroglycan structure
does not yet exist, but we might have had our first glimpse
at o-dystroglycan during this past year. Brancaccio e a/.
[19°] reported a ‘dumbbell’ shape for chicken cardiac
o-dystroglycan using rotary shadowed electron microscopy.
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Figure 1

Dystroglycan amino acid sequences.
Complete primary sequences of
dystroglycan from human [11], rabbit [3]
and mouse ({13]; J Lee, KP Campbell,
unpublished data), and several peptide
sequences from dystroglycan of Torpedo
californica {torpedo) [15], are shown
(the single-letter amino acid code

is used). * denotes a residue that is
identical among all of the sequences.
Shaded regions indicate the following:

1, the signal peptide; ll, the mucin-like
region; lll, the transmembrane domain;
and IV, the dystrophin-binding site.

+ marks the positions of putative N-linked
carbohydrates conserved in all of the
available sequences. Further evidence
for the existence of these madifications
at Asn641 and Asn661 comes from the
fact that peptide sequencing over these
residues is blocked [15]. $ shows the
positions of potential GAG addition sites.
The bold vertical line separates - and

B-dystroglycan.
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They, too, interpreted this to be consistent with a rod-like  o-dystroglycan binds to laminin-2 and agrin (both of
mucin domain in the central region of a-dystroglycan.  which are components of the basal lamina surrounding
Although it is not yet clear if these first images represent  muscle fibers) in a calcium-dependent, heparin-inhibitable
a native dystroglycan structure, an extended conformation  manner [7,17,21,22°]. Recent efforts have more closely
for o-dystroglycan is also suggested by other recent ex-  examined the heparin sensitivity of the binding of
perimental findings [12,20°]. A current model highlighting  o-dystroglycan to its ligands. Pall ez @/. [23*] found that
known or suspected structural features of dystroglycan is  heparin substantially blocks the binding of skeletal muscle

presented in Figure 2.

Function at the sarcolemma

o-dystroglycan to laminin-1, but not to laminin-2. In
contrast, binding of brain- and peripheral nerve derived
o-dystroglycan to both laminin isoforms is inhibited by

Dystroglycan is localized throughout the sarcolemma in  heparin [21,23°]. Heparin inhibition of agrin binding to
skeletal muscle, including in the post-synaptic membrane  dystroglycan depends on the presence of an alternatively
at the neuromuscular junction (NMJ) [2). In virro,  spliced insert in agrin [24*%,25°]. Taken together, these
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Figure 2
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Schematic representation of dystroglycan structure. This is a view

of skeletal muscle dystroglycan, summarizing currently available
information. At the top, agrin and laminin bind to a similar, though
unknown, site on a-dystroglycan [9,22°]. a-dystroglycan is shown
with an extended structure [12,20°] which is probably due to the
presence of a mucin-like domain in its central region [14°,19°].
Putative N-linked carbohydrates are marked by branches, O-linked
mucin-type sugars by connected circles, and potential GAG

chains by connected hexagons. B-dystroglycan begins at Ser654
[14¢,15] and is noncovalently associated with a-dystroglycan [12).
Dotted lines with arrowheads denote molecular associations. The
sarcoglycan complex interacts with the dystroglycan complex, but
whether it binds to a-dystroglycan, B-dystroglycan, or both is not
known (this uncertainty is not shown). The cytoplasmic domain of
B-dystroglycan interacts with dystrophin and Grb2 [4,5°%,33%¢,36°].
The carboxy-terminal 15 amino acids of B-dystroglycan constitute the
dystrophin-binding site [5**]. N, amino terminus; C, carboxyl terminus.

resules suggest that a-dystroglycan binding to extracellular
ligands might be modulated by GAG chains present on
other proteoglycans or on dystroglycan itself.

Dystroglycan is likely to interact with the sarcogly-
cans—fellow transmembrane components of the DGC.
Two groups independently showed that the DGC can
be separated into three subcomplexes which include
the dystroglycan complex and the sarcoglycan complex
[12,26). The sarcoglycan complex is composed of what
are now known as o-, B- and y-sarcoglycan [12,26]. The

nature of the interaction between the dystroglycan and
sarcoglycan complexes is not yet known. However, we can
offer some speculation based on recent results. Mutations
in each of the sarcoglycans result in distinct forms
of limb-girdle muscular dystrophy [27-30]. Mutational
inactivation of one sarcoglycan results in the concomitant
absence of the other sarcoglycans from the sarcolemma.
Although, by immunostaining, dystroglycan appears to be
present in the sarcolemma of biopsy specimens taken from
patients with limb-girdle muscular dystrophies, it might
not be entirely functional there. As the dystroglycan and
sarcoglycan complexes are tightly associated within the
DGC —it takes relatively harsh biochemical conditions
to separate them —it seems reasonable to propose that
loss of the sarcoglycan complex could have effects on the
dystroglycan complex. In support of this notion, earlier
studies in the cardiomyopathic hamster suggest that an
intact sarcoglycan complex is required for the stable
presence of o-dystroglycan in the sarcolemma [31].

A better understanding of the structure—function re-
lationship between B-dystroglycan and its intracellular
binding partners now exists. Experience with Duchenne
muscular dystrophy patients indicated that mutations in
the carboxy-terminal domain of dystrophin correlated with
severe forms of the disease [32]. Recently, a series of i
vitro experiments has identified a B-dystroglycan-binding
sitc on dystrophin in the carboxy-terminal domain of
dystrophin between amino acids 3054 and 3447 [4,5°°].
These data fit nicely with experimental evidence ob-
tained in wviwo. Rafael er a4/, [33**] found that this
same region on dystrophin is critical for both restoration
of DGC localization to the sarcolemma and rescue of
the dystrophic phenotype in dystrophin-deficient mice.
Interestingly, the region of dystrophin that contains
the B-dystroglycan-binding site also contains a WW/WWP
domain [34]. This motif probably mediates the interaction
between dystrophin and its proline-rich binding site on
B-dystroglycan [5°%,35]. In fact, the entire cytoplasmic
domain of B-dystroglycan contains many proline residues
(see Fig. 1). This led Yang er a/. [36°] to test whether
this domain contained an Src homology (SH)3-binding
site. They found that Grb2, an SH2/SH3 adapter protein,
bound to the cytoplasmic domain of B-dystroglycan. It is
still too early to judge the significance of this finding, but
it could be the first tantalizing evidence that dystroglycan
is capable of directly mediating signal transduction events.

What is the role of dystroglycan in muscular dystrophy?
Although murtations in a2 growing number of molecules
that contact or surround dystroglycan in the DGC lead
to muscular dystrophy, to date no form of muscular
dystrophy has been linked to dystroglycan itself. In
Duchenne muscular dystrophy, loss of dystrophin leads
to a reduction in the amount of dystroglycan present
in the sarcolemma [2,3,37-39]. Similar findings have
now been extended to a study of toxin-induced muscle
degeneration/regeneration [40]. As mentioned above, in
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limb-girdle muscular dystrophies there may also be a loss
of dystroglycan function in the sarcolemma. Moreover, in
one form of human congenital muscular dystrophy and
a mouse model for this disease, there is a deficiency of
laminin-2, an extracellular matrix ligand for dystroglycan
[41-43]. Therefore, the presence of dystroglycan in the
sarcolemma and its interaction with laminin seem critical
for muscle fiber viability. This interaction could form a
structural link to stabilize the sarcolemma, as has been
suggested [16]. In fact, it is probably necessary to maintain
this linkage from the ECM all the way to the actin
cytoskeleton [44,45]. Alternatively, or in addition to, a
structural role, dystroglycan might mediate some sort of
cell survival signal that depends on cell-ECM interaction.
Impairment of this type of signal could lead to cell death
as it does in other systems (see [46] for an example). The
latter hypothesis would take on extra significance if a true
signaling capacity is established for dystroglycan.

Function at the neuromuscular junction

A spate of papers in mid-1994 suggested the exciting
possibility that dystroglycan plays an essential role in
synapse formation at the NM]J [7-10]. As this early work
has been reviewed extensively elsewhere [47,48], we will
focus here on several subsequent developments. There is
now general agreement that a-dystroglycan is an abundant
agrin receptor at the NM]J. However, dystroglycan binds
to inactive muscle agrin isoforms as well as, or better
than, it binds to active neural agrin isoforms [10,24°°,49°].
Moreover, in a system that models NM] formation, the
domain of agrin that mediates dystroglycan binding (the
laminin-like G1 domain) is physically separable from the
part that induces acetylcholine receptor (AChR) clusters in
cultured myotubes [24*°,50°]. These results substantially
weaken the case for dystroglycan as the agrin signaling
receptor. Now, the identity of that protein may be known.
The muscle-specific kinase (MuSK) seems to have the
wherewithal to be the signal transducing component of the
agrin receptor [51,52,53%*]. However, it apparently lacks
the ability to bind agrin by itself {53**]. Analogies of this
situation exist in other systems where accessory proteins
are necessary for ligand binding or presentation to the
signaling recepror. This idea and other data led Glass ez 4/.
[53°°] to posit a myotube-associated specificity component
(MASC) that binds agrin and MuSK into a receptor com-
plex. As a-dystroglycan is an agrin-binding protein at the
NMJ, could it be MASC? The answer is probably not. One
issue is the myotube specificity of MASC. Dystroglycan
is known to be expressed in a wide variety of cell types,
although it might be more abundant on the surface of
myotubes than it is on myoblasts [54]). It is also possible
that dystroglycan is modified to a MASC-competent form
during muscle differentiation. Perhaps the best evidence
against dystroglycan being MASC comes from Gesemann
et al. [24**] who showed that an agrin fragment which
lacked the high-affinity a-dystroglycan-binding region still
bound to myotube membranes. A definitive identification
of MASC is awaited.

Where, then, is dystroglycan’s seat at the NM]J table? It
seems reasonable to suggest a structural role in mediating
the connection between the postsynaptic membrane and
the basal lamina. Perhaps it forms a stable ternary
complex, via agrin, with the signaling receptor complex.
Other evidence that dystroglycan plays a structural role
in AChR cluster formation comes from inside the cell.
Apel et al. [55%] showed that dystroglycan codistributes
with rapsyn-induced AChR clusters in quail fibroblasts.
Although details of this interaction are missing, rapsyn
could be the AChR’s link, through dystroglycan, to
the cytoskeleton —mice lacking rapsyn fail to form
postsynaptic clusters of AChR and dystroglycan [56°].
Such a molecular assembly could be the scaffold upon
which AChR clusters are built. This idea is in accord with
the findings of Cohen ¢z 4/. [57°] and others [58,59] who
propose a diffusion trap model for AChR clustering.

Functions in nonmuscle cells

As mentioned, dystroglycan is expressed in a variety of
nonmuscle cell types. By way of contrast to muscle,
far less is known about dystroglycan function in other
tissues. A key question that arises is whether a DGC-like
complex forms in other cells too. a-dystroglycan probably
binds to the G domains of laminins-1 and -2 and agrin
[24#,50°,60]. This raises the possibility that it interacts
with other G-domain-containing proteins such as other
laminin isoforms and the neurexins. Many of these
potential ligands for a-dystroglycan are codistributed in
the basement membranes of various tissues. In vitro,
laminin-1 and -2 can compete with agrin for binding
to o-dystroglycan [9,22°%], arguing that they bind to a
similar site. As a carbohydrate moiety of o-dystroglycan
may be involved in binding to its extracellular ligands
[17,18], there is the suggestion of multivalent binding
to these ligands. B-dystroglycan also seems capable of
interacting with a number of binding partners. Its binding
site on dystrophin is present in alternatively spliced
isoforms of dystrophin that are expressed in nonmuscle
tissues, and is well conserved in utrophin, a widely
expressed dystrophin homolog. Experiments show that
dystroglycan is capable of interacting with dystrophin and
its isoforms present in brain extracts [5°*], and utrophin
cofractionates with dystroglycan from several cell types
[61,62]. Northern analysis indicates that the sarcoglycans,
which are predominantly expressed in skeletal and cardiac
muscle, might also be expressed at lower levels in
other tissues [27-30]. Given these initial results and the
extensively overlapping distribution of dystroglycan and
its binding partners, it seems likely that different types
of dystroglycan complexes can form in different tissues.
Furthermore, different types of dystroglycan complexes
may form within the same tissue. For instance, in the
NM] utrophin might replace dystrophin at the crests of
the junctional folds [63,64].

One nonmuscle tissue in which dystroglycan may be
playing an important role is the kidney. Durbeej ez /. [65°]
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showed that antibody perturbation of the dystroglycan~laminin
interaction disrupts kidney epithelial morphogenesis (Ek-
blom, this issue, pp 700-706). Neural tissue is another
rich source of dystroglycan. Recent work has described the
localization of dystroglycan mRINA and protein in various
regions and cell types within the central nervous system
[13,14°,66]. The function of dystroglycan in the brain is
not vet clear, although dystroglycan does localize to the
glial-vascular interface, suggesting a role in maintenance
of the blood-brain barrier ([66]; M Jucker, personal
communication). In peripheral nerves, dystroglycan is a
laminin-binding protein localized to the Schwann cell
outer membrane [18,21,22°67]. In the &y mouse—a
mode] for congenital muscular dystrophy in humans that
shows a deficiency in laminin a2 chain expression —there
are defects in peripheral nerve myelination, implicating
dystroglycan in myelinogenesis [68].

With the diverse tissue distribution of dystroglycan in
adult organisms apparent, Schofield & 4/ [69] exam-
ined dystroglycan expression during mouse embryogen-
esis. They found that dystroglycan mRNA is expressed
throughout the embryo as early as embryonic day 9.5.
Evidence for dystroglycan expression at earlier embryonic
stages comes from the dystroglycan knockout mice which
die at around embryonic day 6.5, long before any muscle
development occurs (R Williamson ¢ 4/, unpublished
data). This phenocype indicates that dystroglycan plays
important roles in developmental processes and may
explain why dystroglycan loss-of-function mutations have
not been identified in muscular dystrophies.

Conclusions

Although iniually discovered in muscle, dystroglycan
can generally be regarded as a distinct type of ECM
receptor that is present in many, if not most, cell
types. It will continue to be instructive to compare and
contrast dystroglycan with other ECM receptors such
as the integrins. A clear goal of future studies will be
to further define dystroglycan’s molecular interactions in
muscle and other tssues. Among the key questions to
be addressed are: does a-dystroglycan interact selectively
or promiscuously with extracellular ligands that might
be codistributed in the ECM? Could specificity for
these interactions be determined by modifications to
dystroglycan itself or by its association with other proteins
such as the sarcoglycans? It stands to reason that distinct
dystroglycan complexes could have distinct functions.

What are the functions of dystroglycan? Its apparent
central involvement in a variety of muscular dystrophies
argues in favor of a role for it in the maintenance of cellular
integrity. Perhaps dystroglycan accomplishes this simply
by being a molecular link between the ECM and the
cytoskeleton. A more subtle variation on this theme is that
dystroglycan acts as a hitching post for the organization

of other molecules, both inside and outside of the cell.
This ability of dystroglycan may be important for its role in
the establishment and maintenance of complex molecular
assemblies like the DGC and the NM]. The ability of
dystroglycan to spatially organize other molecules might
also reflect a signal transduction capacity. Future efforts
will be aimed at understanding these and other possible
roles for dystroglycan in adult and developing organisms.
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