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Circadian clocks are complex biochemical systems that cycle with
a period of approximately 24 hours. They integrate temporal
information regarding phasing of the solar cycle, and adjust their
phase so as to synchronize an organism’s internal state to the local
environmental day and night1,2. Nocturnal light is the dominant
regulator of this entrainment. In mammals, information about
nocturnal light is transmitted by glutamate released from retinal
projections to the circadian clock in the suprachiasmatic nucleus
of the hypothalamus. Clock resetting requires the activation of
ionotropic glutamate receptors, which mediate Ca2+ influx3. The
response induced by such activation depends on the clock’s
temporal state: during early night it delays the clock phase,
whereas in late night the clock phase is advanced. To investigate
this differential response, we sought signalling elements that
contribute solely to phase delay. We analysed intracellular calcium-
channel ryanodine receptors, which mediate coupled Ca2+ signal-

ling. Depletion of intracellular Ca2+ stores during early night
blocked the effects of glutamate. Activators of ryanodine receptors
induced phase resetting only in early night; inhibitors selectively
blocked delays induced by light and glutamate. These findings
implicate the release of intracellular Ca2+ through ryanodine
receptors in the light-induced phase delay of the circadian clock
restricted to the early night.

In order to understand the mechanisms underlying directionality
in the biphasic light response, we studied the rat suprachiasmatic
nucleus (SCN) in a hypothalamic brain slice. The circadian clock
persists stably for several days in this preparation4. The mean firing
frequency of the ensemble of SCN neurons exhibits a spontaneous
24-h oscillation in vitro (Fig. 1a). Clock phase was determined from
the time-of-peak of this neuronal circadian rhythm. We have
previously shown that direct application of Glu to this SCN brain
slice induces phase-dependent, light-like clock resetting3. We used
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this finding as a means of studying signalling elements downstream
of Glu.

Light-induced clock resetting involves the sequential activation of
Glu receptors, Ca2+ influx, nitric oxide synthase and intercellular
movement of nitric oxide. Nitric oxide can activate soluble guanylyl
cyclase, which increases cGMP and activates cGMP-dependent
protein kinase (PKG). Activation of cGMP-dependent pathways
of SCN in brain slices has been shown to stimulate phase advance of
the clock at night, but not during the day5,6. Furthermore, intra-
cerebroventricular (i.c.v.) injection of KT5823, a specific PKG
inhibitor, blocks light-induced advances of wheel-running rhythms
in hamsters during the late night7,8. To determine whether PKG
activation is associated with the Glu-induced phase shifts, SCN
slices were bathed in KT5823 before treatment with Glu or media. A
30-min incubation in 0.1 mM KT5823 fully inhibited PKG phos-
photransferase activity in the SCN during stimulation by Glu at
circadian time (CT; time after entrained lights on) 14 and 20.
KT5823 itself had no effect on clock phase in late or early night, but
it completely blocked phase advances of the neuronal activity
rhythm induced by Glu in the late night (Fig. 1b, c). However, in

the early night, KT5823 had no effect on Glu-induced phase delays
(Fig. 1d, e). Therefore, the NO–GC–cGMP–PKG pathway does not
mediate the Glu-induced phase delay.

To investigate alternative pathways, we evaluated intracellular
Ca2+ (Ca2+

i ) signalling. Thapsigargin depletes Ca2+
i by blocking the

Ca2+-ATPase that replenishes Ca2+
i stores in the endoplasmic

reticulum9. When applied at either at CT 20 or 14, thapsigargin
itself did not alter the phasing of the neuronal activity rhythm.
Thapsigargin treatment had only a small inhibitory effect on the
phase advance induced by Glu (−1.15 h, CT 20, n ¼ 4, P , 0:001),
but it completely blocked the Glu-induced phase delay (Fig. 1f).
This finding indicates that the Glu-induced phase delay requires
Ca2+

i release.
To examine the Ca2+

i signalling mechanism in early night, we
probed the Ca2+

i -channel ryanodine receptor (RyR). RyRs are
integral membrane proteins associated with cellular organelles,
such as the endoplasmic reticulum, that sequester Ca2+. They are
expressed in neurons where they can mediate release of stored Ca2+

i

(ref. 10). Ca2+
i mobilization by modulators of RyRs can reset

circadian rhythms of melatonin production in avian pinealocytes11.
A preliminary report12 suggests that the rat SCN exhibits circadian
variation in the binding characteristics of RyRs, whereas inositol-
1,4,5-trisphosphate (IP3) receptor binding remains constant across
the 24-h cycle.

To evaluate the contribution of RyRs to phase delays, we studied a
range of reagents that have different mechanisms of action but all
release Ca2+

i through RyRs. Caffeine can directly activate RyRs10,13,
and FK506 and rapamycin bind to immunophilins, a class of
proteins that regulate the ion-channel functions of RyRs13–15.
Although FK506 and rapamycin exert their immunosuppressive
actions through different effectors, both bind to FKBP12, a well-
studied immunophilin stabilizer of RyRs13–15. Application of caf-
feine, FK506 or rapamycin to the SCN at CT 14 induced Glu-like
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phase delays of ,3 h (Fig. 1g); these treatments did not affect clock
phase at CT 6 or 20 (Fig. 2a–c). Microdrops containing 10−6 to 10−2 M
caffeine elicited a dose-dependent phase delay, with a half-maximal
response near 5 3 10 2 4 M (Fig. 2d).

To examine further the pathway mediating Glu-induced phase
delay, we used inhibitors of RyRs. Dantrolene and ruthenium red
each effectively block activation of RyRs, although they act at
different sites on the RyR molecule13,16. Preincubating the SCN in
either dantrolene or ruthenium red before applying a microdrop of
Glu at CT 14 fully blocked phase delays. These inhibitors had no
effect on Glu-induced phase advances at CT 20 (Fig. 3). To
determine whether RyR inhibition affects light-stimulated phase
shifts, we tested dantrolene in vivo. When photic stimuli were
evaluated after i.c.v. injection of dantrolene, the phase delays of
the wheel-running rhythm of hamsters under constant darkness
were significantly attenuated (Fig. 4).

Because caffeine and FK506 have diverse cellular actions17,18, we

sought to identify the pathway mediating the effects of FK506 and
caffeine on the phase-delaying process. The efficacy of these
reagents at CT 14 was tested against the RyR antagonist dantrolene.
In each case, dantrolene fully blocked the agonist’s effect (n ¼ 4,
P , 0:0001, each condition; data not shown). Western blot analysis
with affinity-purified anti-neuronal RyR antibody19,20 demonstrated
that the SCN expresses neuronal RyR (relative molecular mass
325K, CT 14, n ¼ 3; data not shown). Because dantrolene is
highly specific for RyRs and antagonizes the effects of these
modulators, FK506 and caffeine are probably affecting phase
change within the SCN through their RyR-binding properties.

Our data show that SCN signalling elements diverge downstream
from Glu. In the late night, the light/Glu signal causes a 3-h phase
advance of the timekeeping mechanism by means of a cGMP-
dependent pathway (Fig. 1b, c)7,8,21. In the early night, however,
signal transduction downstream of Glu follows a distinct pathway
leading to activation of RyRs and release of Ca2+

i , resulting in a phase
delay of 3 h. Although the steps linking Glu and RyRs are unknown,
nitric oxide is a likely intermediary that could stimulate the ADP
ribosyl cyclase pathway22,23 and/or directly activate RyRs by means
of nitric oxide-mediated polynitrosylation24. Further, our findings
demonstrate that RyR activation contributes a pivotal directional
signal in the context of dynamic clock state. Although their roles in
neurons are not fully understood, RyRs are thought to modulate the
duration and/or amplitude of the Ca2+

i signal25,26. Potential mechan-
isms by which an increase in Ca2+

i could contribute to the phase-
delaying process include activation of Ca2+-dependent kinases,
phosphatases and/or proteases leading to the inactivation or degra-
dation of clock regulatory elements. Indeed, light-induced protein
degradation has been reported in the regulation of clock-related
genes, such as tim in Drosophila27. M
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Methods

Electrophysiology and pharmacology. Inbred Long–Evans rats 6–10 weeks
old were used in these experiments. Procedures for brain slice preparation and
electrophysiology have been described previously3,4. Briefly, spontaneous
activity of single SCN neurons was sampled extracellularly for 4-min periods.
From sequential unit activities, 2-h running means of the neuronal ensemble
were calculated. The phase of the underlying circadian clock was determined by
the time of the peak in the oscillation3,4. Under constant conditions in vitro, the
unperturbed sinusoidal pattern of neuronal activity is predictably high during
the subjective day and low during the subjective night. Activity peaks mid-
subjective day, at circadian time 7 (CT 7, 7 h after lights on in the rat colony;
12:12 LD). To evaluate experimental stimuli, the perfusion pump was stopped,
a droplet of 0.2 or 0.5 ml of test substance was applied bilaterally to the SCN for
10 min, and the SCN was then rinsed with glucose- and bicarbonate-supple-
mented Earle’s balanced salt solution (EBSS). To evaluate potential inhibitors,
perfusion medium was replaced with medium containing the antagonist for
20 min before microdrop application of the phase-shifting stimulus. To
determine the phase after drug treatments, the time-of-peak neuronal activity
was assessed for 1–2 days.
Stereotactic surgery for i.c.v. cannulation and drug injection. Male Syrian
hamsters (Harlan, 100 g) were used to assess pharmacological effects on
behavioural rhythms7,8. A 23-gauge guide cannula was implanted to the lateral
ventricle of each (0.4 mm rostral to bregma, 3.0 mm ventral to dura, 2.4 mm
lateral to midline, with bregma and lambda in a levelled plain). A 30-gauge
stylet was placed in the guide cannula to maintain patency. For i.c.v. injections
the stylet was removed and a 30-gauge injector attached to a microsyringe was
inserted. At 20 min before light exposure, the animals were lightly anaesthetized
with methoxyflurane during i.c.v. injection. Each animal received a 1-ml
injection under dim red light (,1 lux) over 30 s. Generally, animals began to
wake up before completion of the injection and were completely awake before
light exposure (500 lux, 15 min). The animals were then returned to their cages
and maintained in darkness for 10–14 days before the next treatment.
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Synapses in the central nervous system undergo various short-
and long-term changes in their strength1–3, but it is often difficult
to distinguish whether presynaptic or postsynaptic mechanisms
are responsible for these changes. Using patch-clamp recording
from giant synapses in the mouse auditory brainstem4–7, we show
here that short-term synaptic depression can be largely attributed
to rapid depletion of a readily releasable pool of vesicles. Replen-
ishment of this pool is highly dependent on the recent history of

synaptic activity. High-frequency stimulation of presynaptic
terminals significantly enhances the rate of replenishment. Broad-
ening the presynaptic action potential with the potassium-
channel blocker tetraethylammonium, which increases Ca2+

entry, further enhances the rate of replenishment. As this increase
can be suppressed by the Ca2+-channel blocker Cd2+ or by the Ca2+

buffer EGTA, we conclude that Ca2+ influx through voltage-gated
Ca2+ channels is the key signal that dynamically regulates the
refilling of the releasable pool of synaptic vesicles in response to
different patterns of inputs.

Glutamatergic excitatory postsynaptic currents (EPSCs) were
recorded from the principal neurons of the medial nucleus of the
trapezoid body (MNTB) in an all-or-none fashion, consistent with
the fact that each postsynaptic neuron is innervated at the soma by a
single presynaptic calyx (the calyx of Held)8,9. When the presynaptic
axon was stimulated with a 100-ms train at a frequency of 100 to
300 Hz, we observed a frequency-dependent depression in the
amplitude of the EPSCs (Fig. 1a, b). This depression was short-
lasting and reversed within 15 s.

To investigate the mechanisms causing this short-term depres-
sion, we first tested whether desensitization of postsynaptic AMPA
(a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) recep-
tors caused a decline in the amplitude of the EPSCs. When the
desensitization was blocked with cyclothiazide (CTZ, 0.1 mM)10,11,
the decay time course of individual EPSCs was prolonged, but the
relative amplitude of the last EPSC in the train was about the same as
that in the absence of CTZ at all frequencies. A typical recording at
200 Hz is shown in Fig. 1c, d. Because these experiments were
carried out under conditions of a high quantal output (in 2 mM

Figure 1 Use-dependent synaptic depression is independent of postsynaptic

desensitization. a, Typical recording showing frequency-dependent depression

in EPSCs in response to a 100-ms train of stimulation at 100, 200 or 300Hz. Each

EPSC is preceded by a stimulation artefact. The holding potential was −60mV for

this and subsequent figures unless otherwise indicated. b, Summary of the

extent of synaptic depression at three frequencies. On average, the amplitude of

the last EPSC in the train, at a frequency of 100, 200 and 300Hz, was 49:7 6 3:5%,

25:3 6 1:8% and 11:8 6 0:5% of that of the first EPSC (n ¼ 10), respectively. c,

EPSCs recorded from the same cell as in a before and after addition of CTZ

(0.1mM) are superimposed to show that blockade of AMPA-receptor desensitiza-

tion failed to eliminate synaptic depression. d, Comparison of the last EPSC with

or without CTZ treatment from a, after adjusting the baseline to the same level.


