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The involvement of the sarcoglycan complex in the 
pathogenesis of muscular dystrophy is becoming increasingly 
clear. Sarcoglycan gene mutations lead to four forms of 
autosomal recessive limb-girdle muscular dystrophy. Recent 
progress has been made with the identification of novel 
mutations and their correlations with disease. Through this 
research, a better understanding the molecular pathogenesis 
of limb-girdle muscular dystrophy has been gained. Finally, 
animal models are now being used to study viral-mediated 
gene transfer for the future treatment of this disease. Curr Opin 
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Abbreviations 

CFTR cystic fibrosis transmembrane conductance regulator 
DGC dystrophin-glycoprotein complex 
LGMD limb-girdle muscular dystrophy 
SCARMD severe childhood autosomal recessive muscular dystrophy 

Introduction 
T h e  term 'muscular dystrophy' describes a group of dis- 
eases characterized by hereditary progressive muscle 
weakness and degeneration. Several muscular dystrophies, 
including certain types of limb-girdle muscular dystrophy 
(LGMD), are caused by mutations in genes that encode 
sarcolemmal proteins. LGMD is genetically and clinically 
heterogeneous; it may be inherited in an autosomal domi- 
nant or recessive manner, and may have different rates of 
progression and severity. T h e  unifying theme among the 
LGMDs is the initial involvement of the shoulder and 
pelvic girdle muscles, with relative sparing of most other 
muscle groups [ 1,2]. 

T h e  nomenclature for LGMD has changed over the years; 
other terms for this condition have included Duchenne- 
like muscular dystrophy and severe childhood autosomal 
recessive muscular dystrophy (SCARMD). However, as 
understanding of the genetic basis of this varied entity 
progressed, an agreement in nomenclature was achieved 
[3]; LGMDl refers to autosomal dominant forms [4-81 
and LGMD2 refers to the recessive forms [9-281 
(Table 1). 

Among LGMD2 are four distinct subtypes caused by 
mutations in sarcoglycan glycoproteins: LGMD2D 
(a-sarcoglycan) [IS-1 71, LGMD2E (P-sarcoglycan) 
[18,19], LGMDZC (y-sarcoglycan) [20-241, and 
LGMD2F (6-sarcoglycan) [25,26]. Together, these glyco- 
proteins form a subcomplex within the larger dystro- 
phin-glycoprotein complex. 

Dystrophin-glycoprotein complex 
T h e  dystrophin-glycoprotein complex (DGC) is a sar- 
colemmal protein complex that is expressed at high levels 
in striated muscle [29-321. T h e  integral components of 
the DGC include dystrophin, a large, rod-shaped cyto- 
skeletal protein that binds F-actin [33-35,36"]; a-dystro- 
glycan and P-dystroglycan, which bind the G domain of 
laminin-2 and the cysteine-rich region of dystrophin 
[37--391, respectively; the syntrophins, intracellular pro- 
teins that bind the C-terminus of dystrophin [40,41]; 
sarcospan, a four-transmembrane domain protein 
[42']; and the sarcoglycans, as described below 
[15,18,19,22,4346] (Fig. 1). These proteins represent 
the 'core' DGC; however, there are other proteins that 
are known to be associated with this complex, but are 
not found in pure DGC preparations. In addition to 
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different mammalian species, suggesting an important 
role throughout evolution. 

Recently, Ettinger et a/. [65'] cloned and characterized 
the complementary DNA for a fifth sarcoglycan, E-sarco- 
glycan. E-Sarcoglycan shares 44% amino acid identity with 
a-sarcoglycan, and also has a signal sequence and an ex- 
tracellular N-terminus. McNally r?t al. [66'] reported that 
the genomic organization of E-sarcoglycan is identical to 
that of a-sarcoglycan, and localized the gene to human 
chromosome 7q21. As yet, no known muscular dystrophy 
has been mapped to this region, in contrast to the other 
sarcoglycans. Although it has considerable homology with 
the other sarcoglycans, E-sarcoglycan is distinguished from 
the other sarcoglycans by its expression pattern. Whereas 
a-sarcoglycan, P-sarcoglycan, y-sarcoglycan, and 6sarco- 
glycan are expressed either exclusively or predominantly 
in striated muscle, E-sarcoglycan is broadly expressed, and 
appears to be expressed at high levels in lung. This sug- 
gests that E-sarcoglycan may be part of a nonmuscle sar- 
coglycan complex, possibly with functions similar to those 
of the DGC. 

Sarcoglycan-deficient limb-girdle muscular 
dystrophy 
Subsequent to the initial discovery of the DGC, the 
hypothesis arose that muscular dystrophy may be caused 
by mutations in the different DGC components. Several 
populations with autosomal inheritance of muscular dys- 
trophy had been identified, which excluded diagnoses of 
X-linked Duchenne and Becker muscular dystrophies. 
T h e  first evidence for a sarcoglycan complex-specific mus- 
cular dystrophy arose in the early 1990s, when a SCARMD 
(now LGMD2C) population in North Africa was shown 
to have a deficiency of the 50-kDa component of the 
DGC [67]. Based on this association, this 50-kDa com- 
ponent was dubbed 'adhalin', from the Arabic word for 
muscle [43]. 

Linkage analysis of these families localized the SCARMD 
locus to chromosome 13q12, and this was initially con- 
sidered to be the location of the adhalin (now a-sarco- 
glycan) gene as well [20,21]. However, SCARMD was 
shown to be genetically heterogeneous, as families of 
Brazilian and European descent did not demonstrate link- 
age to 13q12 [68-701. This was the first indication that 
LGMD would turn out to be a complex disorder, and also 
highlighted the range of clinical presentations of the dis- 
ease, as is discussed below. In 1994, Roberds et al. [IS] 
reported the primary structure of human a-sarcoglycan 
and localized the gene to chromosome 17, thus excluding 
it as the disease gene of the North African SCARMD 
population. In the same paper, the authors identified 
missense mutations in a-sarcoglycan in a European family, 
which represented the first report of muscular dystrophy 
caused by mutations in a sarcoglycan gene. Since that 

initial discovery, mutations in other sarcoglycan genes 
followed in short order. A homozygous missense mutation 
in P-sarcoglycan was identified in a large Amish pedigree 
with LGMD2E [18]; in the same journal, a sporadic 
case of severe muscular dystrophy with P-sarcoglycan 
mutations was reported [19]. Simultaneously, the 
disease gene of the North African LGMD2C population 
was identified as y-sarcoglycan [22]. Within a year, 
6-sarcoglycan was both characterized and implicated in 
LGMDZF [26,45,46]. 

T h e  sarcoglycan proteins have been shown to form a dis- 
tinct subcomplex within the larger DGC. These glycopro- 
teins are known to be tightly associated with each other, 
given the inability to disrupt the complex using deter- 
gents such as octyl glucoside [71] and sodium dodecyl 
sulfate [23], and the ability of certain subunits to be 
crosslinked with various agents [71]. In addition, a 
common immunohistochemical finding in sarcoglycan- 
deficient LGMD is a loss or significant reduction of sarco- 
glycan components at the sarcolemma [18,19,22,23,26,72], 
demonstrating that membrane stability or targeting of 
each sarcoglycan protein is dependent on the integrity of 
the sarcoglycan complex as a whole. An example of this 
phenomenon in a LGMD2E patient [18] is illustrated in 
Fig. 3. There is also evidence that a-dystroglycan is de- 
stabilized at the extracellular surface of muscle fibers, 
suggesting that the sarcoglycan complex may also be 
closely associated with dystroglycan [73]. This result has 
been confirmed in the study of the cardiomyopathic ham- 
ster, an animal model of LGMD (see Animal models) 
[74-761. In addition, subtle abnormalities in dystrophin 
expression in both LGMD and the cardiomyopathic ham- 
ster have been noted [74,77]. 

Little is known about the functional role of the sarco- 
glycan complex, other than that its integrity is critical for 
normal muscle physiology. Extensive analysis of LGMD 
families has resulted in the identification of several muta- 
tions, which cause disease ranging in phenotype from mild 
impairment with slow progression to severe disability and 
rapid deterioration. T h e  diversity of mutations in sarco- 
glycan-deficient LGMD has been best studied in a-sarco- 
glycan. In two recent studies, 25 different mutations in 31 
unrelated families were reported; together with other 
reports of sporadic mutations, a total of 39 distinct a- 
sarcoglycan mutations have been identified [16,78"]. T h e  
vast majority of mutations are located in the large extra- 
cellular domain, and in particular in exon 3, in which 12 
different mutations have been found. Exon 3 also is the 
location of the most prevalent sarcoglycan mutation, 
Arg77Cys [78"]. In the studies mentioned above, this 
mutation represented nearly a third of all reported chro- 
mosomes. In P-sarcoglycan, most of the identified muta- 
tions also occur extracellularly, in exons 3 and 4. Fewer 
y-sarcoglycan mutations have been identified, and only 
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with apparent functional benefit. This suggests that 
LGMD may be treated symptomatically with steroids to 
improve muscle function, at least in the less severe cases. 
Further study of this possibility will be of immense inter- 
est to clinicians. 

T h e  reasons for this variability are not understood. One 
emerging hypothesis is the idea that the amount of resid- 
ual expression of the sarcoglycan complex may affect 
severity [78",89"]. Tha t  is, if a patient has at least low 
levels of sarcoglycan complex expression, the rate of pro- 
gression may be somewhat attenuated compared with that 
in a person with complete deficiency. Thus,  in the pa- 
tients with residual expression, some degree of normal 
muscle function may be retained, despite the presence of 
an improperly functioning sarcoglycan complex. One 
study of LGMD patients [77] demonstrated a possible 
correlation; however, exceptions were noted within this 
study. In another study of LGMDZD patients, Eymard et 
ad. [89"] demonstrated a relationship between residual 
a-sarcoglycan expression and disease severity. However, 
at least one case of early-onset severe LGMDZD with 
only partial a-sarcoglycan deficiency has been reported, 
which also argues against this correlation [90]. These 
recent reports of partial sarcoglycan complex deficiency 
suggest that the biochemical changes that occur in 
LGMD are not always uniform. They demonstrate that 
full immunohistochemical analysis of all sarcoglycan 
proteins is necessary for a complete asseessment of a 
patient's LGMD. 

Another hypothesis is that specific types of disruptions 
in secondary structure may have different effects. T h e  
Arg91Pro mutation in P-sarcoglycan abolishes a charged 
amino acid and replaces it with a residue that would 
interrupt a P-sheet. On the other hand, the Arg91Leu 
mutation would not have a large effect on secondary 
structure, and would thus result in a milder course of 
disease [84,85]. Others have speculated that there may be 
other genes that affect disease severity [77,87], but no 
clear candidate has arisen. One intriguing possibility is 
involvement of the muscle-specific calcium-dependent 
neutral protease calpain 3, in which mutations have 
been implicated in LGMDZA [ l l ] .  This puzzling 
variability in LGMD presentation remains a problem for 
future investigation. 

As noted above, sarcoglycan complex mutations lead to 
a reduction of 3-dystroglycan [73-761. This would result 
in a disruption of the dystroglycan-mediated link between 
the cytoskeleton and the extracellular matrix. Thus,  one 
role of the sarcoglycan complex may be to preserve the 
integrity of the dystroglycan complex and thereby protect 
muscle cells from stress associated with muscle contrac- 
tion. T h e  precise nature of this sarcoglycan-dystroglycan 
interaction is currently unknown. 

Sarcoglycans and cardiomyopathy 
Recently, evidence has arisen to indicate a possibly impor- 
tant role of the sarcoglycans in the pathogenesis of human 
cardiomyopathies. Cardiac manifestations are a well- 
known consequence of dystrophin mutations [91,92], and 
evidence of sarcoglycan complex disruption in the BIO 
14.6 cardiomyopathic hamster, as described below, lent 
additional support to this hypothesis. 

Cases of cardiomyopathy associated with sarcoglycan 
complex abnormalities have been reported. These  are 
primarily dilated cardiomyopathies, and only in a 
few cases have the causative mutations been identified 
[93,94',95'] (Mora M, Muntoni F, personal communica- 
tion). Thus  far, these patients have initially presented 
with diagnoses of LGMD, with eventual development of 
cardiac disease. However, it is possible that some patients 
may initially present with cardiomyopathy in the absence 
of skeletal muscle disease, and the presence of LGMD 
may not be detected. I t  is intriguing to speculate what 
fraction of the so-called 'idiopathic' cardiomyopathy may 
actually be caused by sarcoglycan complex mutations. 

T h e  identification of dilated cardiomyopathies with sar- 
coglycan complex disruptions fits well with a hypothesis 
proposed by Olson etad. [96'], who identified cardiac actin 
mutations in patients with idiopathic dilated car- 
diomyopathies. T h e  authors drew a distinction between 
dilated and hypertrophic cardiomyopathy, and suggested 
that dilated cardiomyopathy is caused by defects of 
force-transmitting proteins, such as actin, and that 
hypertrophic cardiomyopathy is caused by defects of 
force-generating proteins, such as myosin and tropo- 
myosin. This suggests that sarcoglycan complex mutations 
result in a reduced capacity for the DGC to transmit 
force to the extracellular matrix, causing the observed 
cases of dilated cardiomyopathy. 

Animal models 
T h e  availability of accurate animal models of muscular 
dystrophy can greatly facilitate the investigation of hered- 
itary diseases. In the case of sarcoglycan-deficient LGMD, 
the field has benefited from a naturally occurring model, 
the BIO 14.6 cardiomyopathic hamster [97]. Although 
originally identified for its cardiac phenotype, it was 
known to have skeletal muscle pathology as well. Roberds 
e~ ad. [74] demonstrated that the muscular dystrophy 
observed in this animal was caused by apparent defects in 
the DGC, with an immunohistologic pattern similar to 
that of LGMD. Others later confirmed this finding, and 
demonstrated the relative stability of P-dystroglycan at  
the sarcolemma [75,98]. Nigro et ad. [99"] identified 
a deletion in the 5'-untranslated region of the 6-sarco- 
glycan gene that results in the loss of an exon specific for 
skeletal and cardiac muscle, and the loss of the entire 
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sarcoglycan complex. Subsequently, Sakamoto eta/. [I001 
reported that the same 8-sarcoglycan deletion may cause 
either a hypertrophic or dilated cardiomyopathy. In addi- 
tion, a-dystroglycan appears to be destabilized at the 
extracellular surface of muscle fibers, which is consistent 
with the recent finding in one human LGMD patient 
[73-761. Dystrophin was also found to be less tightly 
associated with the sarcolemma [74]. 

These findings in the BIO 14.6 hamster are consistent 
with those from human LGMDZC-ZE patients, and sup- 
port one hypothesis of sarcoglycan complex function. 
Through its interaction with the dystroglycan complex, 
the sarcoglycan complex serves to stabilize the link be- 
tween the cytoskeleton and extracellular matrix and 
protect the sarcolemma from contraction-induced dam- 
age. A mutation in any sarcoglycan protein leads to disrup- 
tion of sarcoglycan complex function and to subsequent 
dystroglycan complex instability. Thus, the muscle fibers 
are more susceptible to contraction-induced damage, and 
muscular dystrophy results (Fig. 4) [54-561. 

progressive skeletal muscle degeneration, which indicates 
that this is an accurate model of human LGMD. In the 
future, it is reasonable to expect the generation of 
null mice for the other sarcoglycan proteins. Although 
certain physiologic aspects might be predictable, of par- 
ticular interest will be the effects that these null muta- 
tions have in nonmuscle tissues, given the ubiquitous 
expression of P-sarcoglycan and 8-sarcoglycan. In addition, 
these models provide excellent systems in which to test 
possible therapies, such as pharmacologic intervention or 
gene transfer. 

Gene therapy 
As with any hereditary disorder, there is considerable 
interest regarding the possible development of genetic 
therapy for the treatment of LGMD. T h e  potential for 
Duchenne muscular dystrophy gene therapy has been 
extensively studied [102]. Previously, however, similar 
studies had not been conducted for LGMD, primarily 
because of uncertainty about the multiple causes of 
this disease. 

Mouse models of LGMD are currently under develop- Recently, we have demonstrated that, using an adenovirus 
ment. T h e  first mouse knockout of a sarcoglycan gene is that contains the normal 8-sarcoglycan complementary 
the a-sarcoglycan null mouse [ l o l l .  As with the BIO DNA, the skeletal muscle phenotype in the BIO 14.6 
14.6 hamster, the disruption of a-sarcoglycan leads to hamster can be corrected via direct intramuscular injection 

Figure 4. Mechanism o f  pathogenesis o f  sarcoglycan-deficient limb-girdle muscular dystrophy 

(a) The dystrophin-glycoprotein complex forms 
a link between the extracellular matrix and the 
cytoskeleton, and is believed to protect the 
sarcolemma from contraction-induced damage. 
Although the sarcoglycan complex has not been 
shown to participate directly in the transmembrane 
linkage, it may play a role in the stabilization of 
dystroglycan at the cell surface. (b) Mutations in 
sarcoglycan genes lead to a drastic reduction of 
sarcoglycan complex components at the 
sarcolemma, which results in limb-girdle muscular 
dystrophy. One hypothesis of the mechanism of 
pathogenesis is that the defective sarcoglycan 
complex may not be correctly assembled and 
targeted to the cell membrane, which leads to 
instability of the dystroglycan-mediated link 
between laminin and dystrophin. 
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