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Identification of a-Dystroglycan
as a Receptor for Lymphocytic

Choriomeningitis Virus and
Lassa Fever Virus

Wei Cao, Michael D. Henry, Persephone Borrow, Hiroki Yamada,
John H. Elder, Eugene V. Ravkov, Stuart T. Nichol,

Richard W. Compans, Kevin P. Campbell,
Michael B. A. Oldstone*

A peripheral membrane protein that is interactive with lymphocytic chorio-
meningitis virus (LCMV ) was purified from cells permissive to infection. Tryptic
peptides from this protein were determined to be a-dystroglycan (a-DG).
Several strains of LCMV and other arenaviruses, including Lassa fever virus
(LFV ), Oliveros, and Mobala, bound to purified a-DG protein. Soluble a-DG
blocked both LCMV and LFV infection. Cells bearing a null mutation of the gene
encoding DG were resistant to LCMV infection, and reconstitution of DG
expression in null mutant cells restored susceptibility to LCMV infection. Thus,
a-DG is a cellular receptor for both LCMV and LFV.

Arenaviruses consist of several causative
agents of fatal human hemorrhagic fevers (1,
2). Among these pathogens, LFV causes an
estimated 250,000 cases and more than 5000
deaths annually (1, 3). LCMV, the prototype
arenavirus, has been studied primarily in its
natural rodent host as a model of viral immu-
nology and pathogenesis (4).

To initiate infection, the LCMV glyco-
protein GP-1 anchors the virus to the cell sur-
face through a proteinaceous receptor (5, 6),

which by a virus overlay protein blot assay
(VOPBA) (7) was identified as a single high
molecular weight glycoprotein (5). The pres-
ence of the receptor protein correlated directly
with a cell’s susceptibility to LCMV attach-
ment and infection (Fig. 1). Its broad migration
pattern on SDS-polyacrylamide gels is likely to
reflect the heterogeneity in cell type–specific
posttranslational modifications (5). In addition
to murine cells, a broad range of rodent and
primate cells express the same protein (5) (Fig.
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1). LFV bound to what appears to be the same
glycoprotein (Fig. 1), suggesting that both vi-
ruses may share a common cellular receptor.

This putative receptor protein was purified
from a LCMV permissive cell line by sequen-
tial column chromatography (8), and a total of
five tryptic peptides were sequenced (9). Pep-
tides GT384, GT441, and GT417 showed com-
plete homology to dystroglycan (DG) precursor
protein at the regions of amino acids 610 to
623, 571 to 585, 516 to 533, respectively. DG is
encoded by a single gene and processed into
two mature proteins, a- and b-DG, which form
a complex spanning the plasma membrane (10).
The sequences corresponding to the three pep-
tides are near the COOH-terminus of a-DG.
a-DG is an extracellular peripheral membrane
protein that binds to the extracellular matrix and
is noncovalently associated with b-DG, which
is a transmembrane protein linked to the cy-
toskeleton (11). DG complex is expressed in a
wide variety of tissues and cells, and plays an
important role in mediating cell-extracellular
matrix interactions (12, 13). The LCMV recep-
tor was preferentially expressed on the basolat-
eral surface of polarized Madin-Darby canine
kidney (MDCK) cells, facilitating a basolateral
route of LCMV entry (14). This parallels a

similar localization of DG expression (12).
The interaction between a-DG and

LCMV was demonstrated in VOPBAs with
several strains of LCMV [Cl 13, Armstrong 5
(Arm5), and WE54] on blots containing pu-
rified a-DG proteins (Fig. 2B). All these
LCMV strains bound to purified native a-DG
protein (15) (Fig. 2B). In contrast, none of
these viruses recognized the Escherichia coli–
expressed glutathione S-transferase (GST)–
fusion proteins with either FP-D or FP-B
(Fig. 2B), which encode different regions of
DG precursor sequence (10) (Fig. 2A), sug-
gesting that the extreme NH2-terminus of
a-DG and possibly posttranslational modifi-
cations on this protein are crucial for LCMV
recognition. A similarly purified glycopro-
tein, the a2 subunit of the dihydropyri-
dine receptor complex (16), also negatively
charged through glycosylation, did not bind
to LCMV (17). Like LCMV, the arenaviruses

LFV, Mobala, and Oliveros bound to purified
native a-DG protein, but not to the recombi-
nant GST–FP-D or GST–FP-B proteins (Fig.
2C). In contrast, the arenavirus Guanarito
failed to recognize a-DG protein (Fig. 2C).

Purified soluble a-DG competed with the
cell surface virus receptor during LCMV in-
fections in a dose-dependent manner (Fig. 3).
a-DG at 0.9 nM concentration effectively
blocked LCMV infectivity (18) (Fig. 3A) and
significantly reduced production of progeny
LCMV (Fig. 3B). Soluble a-DG blocked in-
fection by LFV at similar concentrations, but
roughly 100-fold higher amounts were re-
quired to block LCMV Arm5 infectivity (17).
In contrast, a-DG had no effect on the infec-
tion by an unrelated RNA virus vesicular
stomatitis virus (VSV) (Fig. 3B).

A mouse embryonic stem (ES) cell line
expressing DG [wild type (wt)] was readily
infected by LCMV (Fig. 4; at a MOI of 10,
.90% of cells were infected). However,
LCMV replication did not occur in DG null ES
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Fig. 1. Binding of LCMV and LFV to cell mem-
brane proteins. VOPBA was performed with
either enriched uninfected baby hamster kid-
ney cell culture fluid (Mock), LCMV (strain Cl
13), or LFV on identical blots. Each lane on the
blot contained 50 mg of purified cell membrane
proteins prepared from two cell lines suscepti-
ble to LCMV infection: monkey kidney line Vero
E6 (lane 1) and mouse fibroblast line MC57
(lane 3); and two cell lines resistant to LCMV
infection and binding, human T lymphocyte line
Jurkat (lane 2) and mouse T lymphocyte line
RMA (lane 4). Molecular size markers are indi-
cated at the sides (in kilodaltons).

Fig. 2. Binding of LCMV, LFV, and other arenavi-
ruses to a-DG. (A) Diagram showing DG precursor
and GST-fusion proteins. The signal sequence (res-
idues 1 to 28) is shown as a solid box. The se-
quence corresponding to a-DG (residues 29 to
653) and b-DG (residues 654 to 895) are shown
as open boxes. Fusion protein GST–FP-D contains
residues 62 to 438 of the DG precursor. Fusion
protein GST–FP-B contains residues 367 to 863 of
the DG precursor. (B) Four identical blots contain-
ing purified DG were used in VOPBAs with either
no virus (nil) or LCMV strains Cl 13, Arm5, and
WE54. Each blot contained protein samples from
three different sources. Lane A contained 10 mg of
purified 156-kD a-DG protein from rabbit skeletal
muscle; lane B contained 40 mg of recombinant
68-kD GST–FP-D; and lane C contained 40 mg of
recombinant 82-kD GST–FP-B. Arrows indicate
the expected full-length proteins. (C) Blots as de-
scribed in (B) were used in VOPBA with arenavi-
ruses LFV, Mobala, Oliveros, and Guanarito.

Fig. 3. Blocking of infection by LCMV with soluble
a-DG protein. (A) 3T6 mouse fibroblast cells were
infected with LCMV strain Cl 13 or VSV in the
presence of increasing concentrations of a-DG. As
a control, LCMV Cl 13 infection was also per-
formed in the presence of increasing concentra-
tions of bovine serum albumin. Sixteen hours lat-
er, cells were immunostained with specific anti-
bodies to detect LCMV nucleoprotein or VSV gly-
coprotein (18), and the number of infected cells
was observed under fluorescence microscopy. The
results were quantitated as an average of at least
four fluorescent areas and plotted as percentage
of control where no competing protein was added.
(B) Virus titers in the 3T6 culture supernatants 16
hours after infection were determined by plaque
assay. Virus titers [log (plaque-forming units) per
milliliter] are plotted against the concentration of
competing proteins added during absorption.
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(ko) cells (19) (Fig. 4; at a MOI of 10, ,0.1%
of cells were infected), yet these cells were
viable, maintained a growth rate similar to the
parental cells, and were equally infectable by
VSV (17). When the a-DG protein was re-
stored on the surface of ko cells by infection
with an adenovirus vector carrying DG cDNA
(19), these cells again became susceptible to
LCMV infection (20) (Fig. 4; at a MOI of 10,
;75% of cells were infected). However, when
the same adenovirus vector expressing green
fluorescent protein or LacZ was used for infec-
tion, less than 0.1% of ko cells were infectable
by LCMV (17).

Old World arenaviruses including LCMV,
LFV, and Mobala, which are phylogeneti-
cally and serologically distinct from the New
World arenaviruses (1, 21), specifically rec-
ognized the a-DG receptor protein. Oliveros
virus, a group C New World arenavirus (1,
22), also bound to a-DG in VOPBA, but
Guanarito, another New World arenavirus,
failed to do so. Use of ES ko cells alone and
reconstituted with DG may prove valuable to
further group the arenaviruses.

Cellular receptors are key elements in de-
termining the tropism and pathogenesis of
virus infection. The presence of a-DG in all
the tissues and organs examined to date cor-
relates with the tropism of LCMV (5, 23).
High sequence conservation in the gene en-
coding DG (11) supports the broad host range
for LCMV and arenavirus infections of ani-
mals and humans (1). Characterization of the
a-DG–arenavirus interaction should eluci-
date the early events of arenavirus infection
and facilitate the development of strategies to
intervene and prevent this crucial interaction.
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Fig. 4. Requirement of a-DG expression
by LCMV infection. Parental wt ES cells,
DG null ko cells, and ko cells reconsti-
tuted with dystroglycan (ko1DG) were
infected with LCMV strain Cl 13 at a
multiplicity of infection (MOI) of 0.1, 1,
and 10, respectively. Sixteen hours lat-
er, cells were stained with mAb 1-1-3 to
detect LCMV nucleoprotein by immu-
nofluorescence. DG reconstitution was
achieved by infecting ko cells with an
adenovirus vector carrying rabbit DG
cDNA.
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