Letter to the Editor

Nomenclature of Voltage-Gated Calcium Channels

Voltage-gated Ca²⁺ channels mediate calcium influx in response to membrane depolarization and regulate intracellular processes such as contraction, secretion, neurotransmission, and gene expression. They are members of a gene superfamily of transmembrane ion channel proteins that includes voltage-gated K⁺ and Na⁺ channels. The Ca2+ channels that have been characterized biochemically are complex proteins composed of four or five distinct subunits, which are encoded by multiple genes. The α_1 subunit of 190–250 kDa is the largest subunit, and it incorporates the conduction pore, the voltage sensor and gating apparatus, and the known sites of channel regulation by second messengers, drugs, and toxins. An intracellular ß subunit and a transmembrane, disulfide-linked $\alpha_2\delta$ subunit complex are components of most types of Ca²⁺ channels. A γ subunit has also been found in skeletal muscle Ca²⁺ channels, and related subunits are expressed in heart and brain. Although these auxiliary subunits modulate the properties of the channel complex, the pharmacological and electrophysiological diversity of Ca²⁺ channels arises primarily from the existence of multiple forms of α_1 subunits. Mammalian α_1 subunits are encoded by at least ten distinct genes. Historically, various names have been given to the corresponding gene products, giving rise to distinct and sometimes confusing nomenclatures. In 1994, some of us proposed a unified nomenclature based on the most widely accepted system at the time: α_1 subunits were referred to as α_{1S} for the original skeletal muscle isoform and α_{1A} through α_{1E} for those discovered subsequently (Birnbaumer et al., 1994). Since then, four new α_1 subunits have been identified, which were named α_{1F} through α_{1I} .

Ca²⁺ currents recorded in different cell types have diverse physiological and pharmacological properties, and an alphabetical nomenclature has also evolved for the distinct classes of Ca²⁺ currents. L-type Ca²⁺ currents require a strong depolarization for activation, are long lasting, and are blocked by the organic L-type Ca²⁺ channel antagonists, including dihydropyridines, phenylalkylamines, and benzothiazepines. They are the main Ca²⁺ currents recorded in muscle and endocrine cells, where they initiate contraction and secretion. N-type, P/Q-type, and R-type Ca²⁺ currents also require strong depolarization for activation. They are unaffected by L-type Ca²⁺ antagonist drugs but are blocked by specific polypeptide toxins from snail and spider venoms. They are expressed primarily in neurons, where they initiate neurotransmission at most fast synapses. T-type Ca2+ currents are activated by weak depolarizations and are transient. They are resistant to both organic antagonists and to the snake and spider toxins used to define the N- and P/Q-type Ca²⁺ currents. They are expressed in a wide variety of cell types, where they are involved in shaping the action potential and controlling patterns of repetitive firing.

As new Ca²⁺ channel genes are cloned, it is apparent that these two alphabetical nomenclatures will overlap at α_{1L} , which may not mediate an L-type Ca²⁺ current and therefore may create confusion. Moreover, the present alphabetical nomenclature does not reveal the structural relationships among the α_1 subunits, which can be grouped into three families: (1) α_{1S} , α_{1C} , α_{1D} , and α_{1F} ; (2) $\alpha_{1A'}$, $\alpha_{1B'}$, and $\alpha_{1E'}$; and (3) $\alpha_{1G'}$, $\alpha_{1H'}$, and $\alpha_{1I'}$. The complete amino acid sequences of these α_1 subunits are more than 70% identical within a family but less than 40% identical among families. These family relationships are illustrated for the more conserved transmembrane and pore domains in Figure 1. Division of calcium channels into these three families is phylogenetically ancient, as representatives of each are found in the C. elegans genome. Ideally, a nomenclature for Ca²⁺ channel α_1 subunits should provide a systematic organization based on their structural relationships and should be coordinated with nomenclatures for the other families of voltagegated ion channels of different ionic selectivities (ie., K⁺ and Na⁺).

For these reasons, we wish to propose a new nomenclature of voltage-gated Ca²⁺ channels (Table 1), which is more systematic and mimics the well-defined K⁺ channel nomenclature (Chandy et al., 1991). This nomenclature uses a numerical system (K_V1.1, K_V2.1, K_V3.1, etc.) to define families and subfamilies of K⁺ channels based on similarities in amino acid sequences. In a similar manner, we propose that Ca²⁺ channels should be renamed using the chemical symbol of the principal permeating ion (Ca) with the principal physiological regulator (voltage) indicated as a subscript (Ca_V). The numerical identifier would correspond to the Ca_V channel α_1 subunit gene family (1 through 3 at present) and the order of discovery of the α_1 subunit within that family (1

Figure 1. Phylogeny of Voltage-Gated Ca²⁺ Channel α_1 Subunits Only the membrane-spanning segments and the pore loops (~350 amino acids) are compared. First, all sequence pairs were compared, which clearly defines three families with intrafamily sequence identities above 80% (Ca_v1.m, Ca_v2.m, Ca_v3.m). Then, a consensus sequence was defined for each family, and these three sequences were compared to one another, with interfamily sequence identities of ~52% (Ca_v1.m versus Ca_v2.m) and 28% (Ca_v3.m versus Ca_v1.m or Ca_v2.m).

Table 1. Proposed Nomenclature for Cloned Voltage-Gated Ca $^{2+}$ Channel $lpha_1$ Subunits					
Former Names	Accession Number	Gene Name and Human Chromosome	Splice Types	Former Names	Primary Tissues
$\alpha_{1S}, \alpha_{1Skm}, CaCh1$	X05921	CACNA1S; 1q31-32			skeletal muscle
α_{1C} , rbC, CaCh2	CaCh2, X15539	CACNA1C; 12p13.3	Ca _v 1.2a	α_{1C-a}	heart
α ₁ 1.2			Ca _v 1.2b	α_{1C-b}	smooth muscle
	rbC-I, M67516; rbC-II, M67515		Ca _v 1.2c	α_{1C-b}	brain, heart, pituitary, adrenal
α_{1D} , rbD, CaCh3	M76558	CACNA1D; 3p14.3			brain, pancreas, kidney, ovary, cochlea
α_{1F}	AJ224874	CACNA1F; Xp11.23			retina
α_{1A} , rbA, CaCh4, BI	rbA, M64373; BI-1, X57476 BI-2, X57477	CACNA1A; 19p13	Ca _v 2.1a Ca _v 2.1b	BI1 BI2	brain, cochlea, pituitary brain, cochlea, pituitary
Ca _v 2.2 α_{1B} , rbB, CaCh5, BIII α_1 2.2	rbB, M92905; BIII, D14157; human α _{1B} , M94172	CACNA1B; 9q34	Ca _v 2.2a	α _{1B-1}	brain, nervous system
			Ca _v 2.2b	α_{1B-2}	brain, nervous system
Ca _v 2.3 α_{1E} , rbE, CaCh6, BII $\alpha_12.3$	rbE, L15453, BII-1, X67855; human α _{1ε} , L29384	CACNA1E; 1q25-31	Ca _v 2.3a	BII	brain, cochlea, retina, heart, pituitary
			Ca _v 2.3b	BII2	brain, cochlea, retina
α_{1G}	AF027984; AF029228	CACNA1G; 17q22	Ca _v 3.1a		brain, nervous system
α_{1H}	AF051946; AF073931	CACNA1H; 16p13.3	Ca _v 3.2a		brain, heart, kidney, liver
α ₁₁	AF086827	CACNA1I; 22q12.3-13-2	Ca _v 3.3a		brain
	Proposed Nomencia Former Names α ₁₅ , α _{15km} , CaCh1 α _{1C} , rbC, CaCh2 α _{1D} , rbD, CaCh3 α _{1F} α _{1B} , rbA, CaCh4, BI α _{1E} , rbE, CaCh5, BIII α _{1G} α _{1H}	Proposed Nomenciature for Cloned Voltage-Gated Former Names Accession Number α_{15} , α_{15km} , CaCh1 X05921 α_{1c} , rbC, CaCh2 CaCh2, X15539 α_{1c} , rbC, CaCh2 CaCh2, X15539 α_{1D} , rbD, CaCh3 M76558 α_{1F} AJ224874 α_{1F} , rbA, CaCh4, BI rbA, M64373; BI-1, X57476 BI-2, X57477 BI-2, X57477 α_{1B} , rbB, CaCh5, BIII rbB, M92905; BIII, D14157; human α_{1B} , M94172 α_{1E} , rbE, CaCh6, BII rbE, L15453, BII-1, X67855; human α_{1E} , L29384 α_{1G} AF027984; AF029228 α_{1H} AF086827	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ $	$\begin{array}{ $

The cloned voltage-gated Ca²⁺ channels and most widely studied alternate splice forms are presented together with the proposed nomenclature and previous nomenclatures.

through m). According to this nomenclature, the Ca_v1 family (Ca_v1.1 through Ca_v1.4) includes channels containing $\alpha_{1S},\,\alpha_{1C},\,\alpha_{1D},$ and $\alpha_{1F},$ which mediate L-type Ca^{2+} currents (Table 1). The Cay2 family (Cay2.1 through Ca_v2.3) includes channels containing $\alpha_{1A_{1}}$, $\alpha_{1B_{1}}$ and $\alpha_{1E_{1}}$ which mediate P/Q-type, N-type, and R-type Ca²⁺ currents, respectively (Table 1). The Ca_v3 family (Ca_v3.1 through Ca_v3.3) includes channels containing α_{1G} , α_{1H} , and α_{11} , which mediate T-type Ca²⁺ currents (Table 1). When specific reference to the α_1 subunit within the Ca²⁺ channel complex is intended, the designation $\alpha_1 1.m$, $\alpha_1 2.m$, or $\alpha_1 3.m$ may be used, where the numeral m represents the individual gene/protein within the family. Where applicable, lowercase letters are used to distinguish alternatively spliced variants (e.g., Ca_v1.2a corresponds to channels containing the cardiac variant of the former α_{1C}). Such a systematic nomenclature has proved successful for the K_{ν} channel proteins. Its strength resides in the rational basis derived from the structural relationships among the channel proteins and the ease and precision with which new channels can be added.

The nomenclature of the auxiliary subunits is not modified, since it already includes numbers for the gene family and lowercase letters for the splice variants. Thus, the subunit compositions of the voltage-dependent Ca²⁺ channels Ca_vn.mx may be described as $\alpha_1 n.mx/\beta m'x'/\beta m'x'/2 m'x'/2 m'x'/2$ $\gamma m'' x'' / \alpha_2 \delta m''' x'''$ complexes, where the number n defines a main family, the numbers m, m', m'', and m''' refer

to the individual genes/proteins within the families, and the letters x_1, x'_1, x''_1 and x''' identify the splice variants. Standard prefixes can be placed in front of the channel name to identify the species of origin. In this notation, the skeletal muscle calcium channel would be written $\alpha_1 1.1a/$ $\beta 1a/\gamma 1a/\alpha_2 \delta 1a$. With this new nomenclature, the Ca_v designation may also be used to identify calcium channel auxiliary subunits such as $Ca_{\nu\beta}$ or $Ca_{\nu\gamma}$ independent of their presence in a calcium channel complex.

We hope that this new nomenclature for α_1 subunits will be a stimulus to further research on voltage-gated Ca²⁺ channels by providing a common, easily accessible standard of reference for scientists working in this field. A fulllength review article* is planned to present a more detailed proposal for nomenclature of the many alternate splice forms of the α_1 subunits and the auxiliary subunits of Ca²⁺ channels that have been described in cDNA cloning experiments.

Eric A. Ertel,¹ Kevin P. Campbell,² Michael M. Harpold,³ Franz Hofmann,⁴ Yasuo Mori,⁵ Edward Perez-Reyes,⁶ Arnold Schwartz,⁷ Terry P. Snutch,⁸ Tsutomu Tanabe,⁹ Lutz Birnbaumer,¹⁰ Richard W. Tsien,¹¹ and William A. Catterall^{12,13}

* This nomenclature has been approved by the Nomenclature Committee of the International Union of Pharmacology, and a review article giving more details of the nomenclature for calcium channel subunits and splice variants is planned for Pharmacological Reviews.

¹Pharmaceutical Research Hoffman-LaRoche, AG CH-4070 Basel Switzerland ²Department of Physiology and Biophysics Howard Hughes Medical Institute University of Iowa Iowa City, Iowa 52242 ³EnkephaSys Santa Fe, New Mexico 87505 ⁴Institute for Pharmacology and Toxicology Technical University of Munich 80802 Munich Federal Republic of Germany ⁵Department of Information Physiology National Institute for Physiological Sciences Okazaki, Aichi 444 Japan ⁶Department of Pharmacology University of Virginia Charlottesville, Virginia 22908 ⁷Department of Pharmacology and Cell Biophysics University of Cincinnati College of Medicine Cincinnati, Ohio 45267 ⁸Biotechnology Laboratory University of British Columbia Vancouver, British Columbia V6T 1Z3 Canada ⁹Department of Pharmacology and Neurobiology Graduate School of Medicine Tokyo Medical and Dental University Tokyo 113-8519 Japan ¹⁰Department of Cell Biology University of California, Los Angeles Los Angeles, California 90095 ¹¹Department of Molecular and Cellular Physiology Stanford University Stanford, California 94305 ¹²Department of Pharmacology University of Washington Seattle, Washington 98195

References

Birnbaumer, L., Campbell, K.P., Catterall, W.A., Harpold, M.M., Hofmann, F., Horne, W.A., Mori, Y., Schwartz, A., Snutch, T.P., Tanabe, T., et al. (1994). Neuron *13*, 505–506. Chandy, K.G. (1991). Nature *352*, 26.

¹³To whom correspondence should be addressed (e-mail: wcatt@ u.washington.edu).