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Animal models for muscular dystrophy: valuable tools
for the development of therapies
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Since the identification of dystrophin as the causative factor in Duchenne muscular dystrophy, an increasing
amount of information on the molecular basis of muscular dystrophies has facilitated the division of these
heterogeneous disorders into distinct groups. As more light is being shed on the genes and proteins involved in
muscular dystrophy, diagnosis of patients has improved enormously. In addition to naturally occurring animal
models, a number of genetically engineered murine models for muscular dystrophy have been generated. These
animal models have provided valuable clues to the understanding of the pathogenesis of these disorders.
Furthermore, as therapeutic approaches are being developed, mutant animals represent good models in which
they can be tested. The present review focuses on the recent advancements of gene transfer-based strategies,
with a special emphasis on animal models for Duchenne and limb-girdle muscular dystrophies.

INTRODUCTION

Muscular dystrophy (MD) refers to a number of clinically and
genetically heterogeneous disorders whose molecular basis has
been elucidated in the last decade or so. The identification of
dystrophin as the defective protein in Duchenne muscular
dystrophy (1,2) was soon followed by the isolation of a number
of dystrophin-associated proteins in skeletal muscle. These
proteins form a large oligomeric complex named the
dystrophin–glycoprotein complex (DGC) (Fig. 1) (3–6) that
bridges across the sarcolemma and connects the extracellular
matrix and the actin cytoskeleton (7,8). To date, the core skel-
etal muscle DGC is composed of dystrophin, the sarcoglycans
(α-, β-, γ- and δ-SG), dystroglycans (α- and β-DG), sarcospan
(SSPN) (9) and the syntrophins. In addition, a number of extra-
and intracellular proteins are less tightly associated with the
DGC, such as nitric oxide synthase (nNOS) (10), dystrobrevin
(11,12), caveolin 3 (13) and laminin-2 (14).

The finding that expression of DGC components was
perturbed in dystrophic muscle subsequently led to the recog-
nition of the involvement of this complex in various forms of
MD (15–17). Mutations in genes encoding the sarcoglycans
are responsible for autosomal recessive forms of limb-girdle
muscular dystrophies (LGMD 2C–2F) (18–27). The laminin
α2 chain, a basal lamina protein connected to the DGC, is
responsible for about half of the ‘occidental’ or ‘classical’
forms of congenital muscular dystrophy (CMD) (reviewed in
refs 28,29). The α7 integrin subunit, a transmembrane laminin
receptor, is involved in human congenital myopathy (30).
Interestingly, dystroglycan, sarcospan and syntrophins have
not been associated with muscular dystrophies to date.

Despite the tremendous improvement in the understanding
of the molecular basis of MD (31), no treatment is currently

available. Thus, the development of therapies is the focus of
numerous studies worldwide (32–34). The availability of
animal models for these disorders (35) constitutes a critical
asset, since it allows extensive pre-clinical studies on the safety
and the functionality of various therapeutic approaches.

Three main avenues of research in the development of thera-
peutic approaches for MD have emerged in the past years and
can be differentiated as follows: (i) ex vivo strategies where
‘normal’ or modified cultured cells (e.g. myoblasts, stem cells)
are being transplanted into the skeletal muscle of a diseased
recipient; (ii) in vivo strategies aiming at (a) introducing a
‘normal’ copy of the defective gene or a compensatory gene
into the host myofibers by introduction of viral or non-viral
vectors or (b) correcting the endogenous defective gene, using,
for example, DNA–RNA chimeric oligonucleotides; and, more
recently, (iii) pharmacological therapies. In the present review,
we will focus mainly on viral gene transfer in animal models of
DMD and LGMDs with sarcoglycan deficiency (Fig. 1).

MODELS FOR MUSCULAR DYSTROPHY

The currently available animal models for MD presented
below are represented in schematically Figure 2.

Dystrophinopathy

The mdx mouse, a naturally occurring animal model for DMD,
has been available for over a decade (36). Other mutations in
the dystrophin gene have been found in mutant mice (mdx2-
5cv) that develop a dystrophic phenotype (37,38). Much contro-
versy over the resemblance, or lack thereof, of the pathology
between the mdx mouse and DMD patients has arisen. A
double mutant lacking both dystrophin and utrophin (mdx/

+To whom correspondence should be addressed. Tel: +1 319 335 7867; Fax: +1 319 335 6957; Email: kevin-campbell@uiowa.edu



2460 Human Molecular Genetics, 2000, Vol. 9, No. 16 Review

utnr–) has been generated and displays a phenotype closer to
that of DMD patients, including a cardiomyopathy (39,40).
These animals thus appear to be a more valid model for DMD.
Early transgenic experiments, using full-length as well as mini-
dystrophin constructs, have demonstrated that expression of
∼20% of the dystrophin protein is sufficient to prevent the
development of muscle pathology in mdx mice (41,42), thus
generating great hope for a treatment for DMD, and by exten-
sion for the treatment of other types of MD. The dystrophic
golden retriever dog (GRMD) represents a somewhat more
attractive animal model for DMD than the murine models
because of its larger size (43,44). Unfortunately, there is
phenotypic variability between litters, and maintenance of a
kennel of GRMDs is not straightforward.

Sarcoglycanopathy

The BIO 14.6 cardiomyopathic hamster, studied for several
decades because of its cardiac phenotype, was recognized as a
model for LGMD2F with δ-SG deficiency (45,46). Addition-
ally, in the last 2 years, disruption of several sarcoglycans has
been achieved in mice, thus providing models for all the
sarcoglycanopathies known to date (47–52). All sarcoglycan-
null animals display a progressive muscular dystrophy of vari-
able severity. In addition, these models share the property of a
significant secondary reduction in the expression of the other
members of the sarcoglycan–sarcospan complex as well as
some variable degree of disruption of other components of the
DGC. Membrane integrity is disrupted in most of these animal
models and can be assessed by the use of tracer dye markers
(53). Importantly, unlike Sgca-null mice, Sgcb-, Sgcg- and
Sgcd-null mouse models display a cardiac phenotype
(48,50,52), and perfusion studies revealed abnormal vascular
function in Sgcb- and Sgcd-null mice (50,52), thus providing

new insights into the complexity of the pathological mecha-
nisms of LGMD 2E and 2F. Surprisingly, although sarcospan
expression is affected consistently by loss of the sarcoglycan
subcomplex in sarcoglycan-deficient animal models, SSPN-
null mice do not present with muscle pathology (54).

Congenital muscular dystrophy (CMD) with deficiency in
laminin α2 chain

As many as five murine models for laminin α2-deficient CMD
are now available, of which two knock-out strains were gener-
ated recently (dy3K and dyW) (55,56). The long-known strains
dy (57) and dy2J (58–60) present a muscle pathology and a
dysmyelination of the peripheral nervous system (61), the
latter being less severely affected since it expresses a truncated
form of the protein. Recently, another spontaneous mutant
strain (named dyPAS mice) lacking the α2 chain of laminin was
observed fortuitously (62). These mice, as well as the dyW and
dy3K, present with a severe phenotype, close to that of the dy
mouse, and, since their genetic defect is known, may become
more widely used.

Interestingly, transgenic experiments have demonstrated that
muscle-specific expression of the laminin α2 chain indeed
restored the muscle phenotype in dy and dyW mice but did not
prevent the occurrence of the neuropathic phenotype in these
mice (56), thus demonstrating the importance of a widespread
expression of this protein.

Dysferlinopathy

Recently, a deletion in the dysferlin gene has been identified in
SJL mice, a spontaneous strain used as a model for different
human disorders for several decades (63). This mouse
develops a progressive muscular dystrophy affecting primarily
proximal muscle groups (63) and thus represents a novel
model for LGMD 2B and Miyoshi myopathy.

Other models

Although dystroglycan has not yet been associated with a
human disorder, it nevertheless constitutes an essential compo-
nent of the DGC, and in vitro blockade of the α-dystroglycan
interaction with laminin induced a dystrophic phenotype in
myotubes (64). Furthermore, dystroglycan deficiency in mice
leads to embryonic lethality (65) whereas chimeric mice
develop a muscular dystrophy (66). Disruption of integrin α7
also leads to a dystrophic phenotype in mice (67). In addition,
mice chimeric for the α5 integrin subunit also develop muscle
pathology, detectable at a very early age (68), whereas α5
integrin-deficient mice die early in embryogenesis (69).
Finally, deficiency of α-dystrobrevin, a cytoplasmic protein
linked to dystrophin, leads to dystrophic changes in the skeletal
muscle of adbn-null mice although the DGC appears preserved
(11). As in mdx mice, the diaphragm was the most affected
muscle, and myopathic changes were also detected in the heart
of adbn-null mice (11). It is noteworthy that triple mutant
animals lacking dystrophin, utrophin and α-dystrobrevin did
not appear more severely affected than the mdx/utrn-null
animals (11).

Figure 1. Schematic of vector-based therapeutic approaches for muscular dys-
trophy. Viral or non-viral vectors may be used for (i) in vivo gene therapy and
may be delivered either directly into skeletal muscle or systemically; and (ii) in
vitro gene therapy where they are used for infecting cultured cells that are then
transplanted into the recipient animal. Ad, adenovirus; AAV, adeno-associated
virus; DNA, naked plasmid DNA; HSV-1, herpes simplex virus.
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EX VIVO APPROACHES

Myoblast transfer

Myoblast therapy initially generated great hope, but early clin-
ical trials showed little success (70). Importantly, recent
studies demonstrated that persistence of donor myoblasts did
not necessarily lead to restored expression of dystrophin at the
sarcolemma of DMD recipient patients (71). Nevertheless, this
avenue of research is still being pursued, with revived interest
since some functional benefit was obtained in immuno-
suppressed mdx mice (72,73). Functional benefit is obtained
despite the observation that myoblast transplantation is
hindered greatly by the poor survival of injected myoblasts.
Poor survival is due not only to inflammatory reactions to the
transplanted myoblasts and to the therapeutic gene product
(74) but also to the intrinsic characteristics of the muscle-
derived cells that are transplanted (75,76). Nevertheless, the
surviving ∼1% of the transplanted cells are then responsible for
new muscle formation (76). Most relevant to the potential for
treating DMD is the finding that dystrophin itself appears to
induce rejection of transplanted wild-type myoblasts in the
mdx mouse (77). Other proteins may also contribute to rejec-
tion, as pointed out in a recent report that demonstrated the
importance of using donor myoblasts that match the host
muscle for myosin heavy chain expression (78).

Myoblast transplantation has also been investigated in
animal models of CMD with deficiency in the α2 chain in
laminin. Moderate success at restoring laminin α2 expression
was obtained in skeletal muscle of dy/dy mice by human and
murine myoblast transplantation (79,80).

Stem cells

A new avenue of research for the treatment of muscular dystro-
phies is now being explored, namely the use of stem cells (81).
Two recent reports (82,83) provide in vitro and in vivo
evidence that bone marrow transplantation allowed recruit-
ment of stem cells into muscle of mdx mice. Furthermore,
expression of dystrophin was demonstrated, although at levels
that would not be likely to provide functional benefit (83).
Nevertheless, as transplantation techniques are optimized, this
approach constitutes an attractive means for systemic targeting
of muscle groups.

A recent report suggests that blood-borne macrophages may
play an essential role in triggering de novo muscle regeneration
and should thus be taken into account for developing satellite
cell transplantation (84).

IN VIVO APPROACHES

One of the major hurdles to vector-based therapies in MD
patients is the large volume and wide distribution of the target

Figure 2. Animal models of muscular dystrophies. Chimeric animals for dystroglycan and integrin α5 are striped. See text for references. Not drawn to scale.
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tissue. Skeletal muscle may constitute >40% of the human
body, and some muscles, such as the diaphragm and intercostal
muscles, are not easily accessible to a route of administration
such as intramuscular injections. In addition, the heart is
affected in DMD and in a subset of LGMD patients. Thus, as
detailed below, systemic delivery appears a necessity. Unfor-
tunately, only focal transduction has been obtained from
systemic delivery, even with the use of permeabilizing agents.

Naked DNA transfer

Renewed enthusiasm for plasmid DNA as a non-viral gene
transfer vector (85), and thus a safer alternative to viral vectors,
seems to have arisen with the development of more efficient
delivery strategies. Intravascular injection of plasmid DNA
under high hydrostatic pressure has been shown to lead to high
efficiency of reporter gene product expression in several
muscle groups of rat hindlimbs (86). In addition, high-level
and long-lasting gene expression of reporter gene products has
been obtained by optimized electroporation conditions (87).

Further studies with therapeutic transgenes nevertheless are
warranted in animal models of MD to provide data more
directly relevant to these diseases and to support the encour-
aging results obtained with reporter genes in wild-type
animals. This may prove important since the mechanisms for
uptake of naked plasmid DNA remain unclear (88) and uptake
mechanisms may differ in dystrophic muscle.

Virally mediated gene transfer

The initial hopes generated by adenoviral vectors have been
dampened by the identification of major drawbacks such as
(i) the transient expression of the transgene resulting from both
humoral and cellular immune responses against viral antigens
and transgene products (89,90); and (ii) the inability to trans-
duce mature myofibers efficiently (91–93). Improved adeno-
viral vectors, such as the so-called gutted adenovirus, recently
have emerged and combine the advantages of being less
immunogenic and of being able to accommodate larger thera-
peutic genes such as dystrophin and laminin α2 chain along
with appropriate regulatory sequences (94–98). Further modi-
fication of adenoviral vectors is of interest in order to enhance
muscle cell transduction (99) or to promote genomic integra-
tion (100).

In the last few years, adeno-associated vectors (AAVs) were
developed and hold great promise because of their low
immunogenicity and their potential for integration. In addition,
transduction of mature myofibers is achieved effectively with
AAVs (101). Unfortunately, AAV gene transfer is only
possible for a restricted number of MDs since they can only
accommodate up to 5 kb of exogenous DNA, thus excluding
their use for gene transfer of the dystrophin, utrophin or
laminin α2 chain genes. Nevertheless, recent reports on the
modification of AAV and the use of dual viruses to accommo-
date larger inserts (102,103) are opening up some new oppor-
tunities for AAV-mediated gene transfer of large therapeutic
genes. In addition, other types of virus are being investigated
as alternatives to adenoviruses. Interesting results have been
obtained with the herpes simplex virus type 1 (HSV-1)-
(104,105) as well as Epstein–Barr virus (EBV)-based mini-
chromosome vectors (106).

Since the size of the dystrophin cDNA (14 kb) precludes its
insertion into conventional viral vectors, with the exception of
gutted adenoviruses, mini-dystrophin genes have been engi-
neered and tested for their ability to rescue dystrophic muscle.
Several versions of dystrophin minigenes have proven
successful at improving the muscle phenotype in mdx mice
(107–109) and are expected to convert a DMD phenotype into
a milder BMD phenotype.

An alternative to delivering dystrophin to dystrophic muscle
is to introduce utrophin, a dystrophin homolog (110–112), as
this should alleviate any immune response elicited by
dystrophin itself. Studies using transgenic animals initially
demonstrated that either full-length or truncated utrophin could
indeed functionally replace dystrophin in skeletal muscle of
mdx mice (113–116). Substantial efforts have since been made
to deliver the utrophin gene via adenoviral vectors and have
indeed led to improvement of the muscle pathology in mdx
mice (117,118). In addition, a recent report demonstrated that
adenovirus-mediated gene transfer of a utrophin minigene in
the skeletal muscle of double mutant mice leads to protection
against the dystrophic process (119).

On their identification, the sarcoglycans were soon recog-
nized as interesting candidates for viral gene transfer because
their cDNAs are <1.5 kb and can thus be accommodated easily
by adenovirus as well as AAVs. Our laboratory initially
demonstrated that adenoviral gene transfer could deliver δ-SG
successfully to skeletal muscle of the BIO 14.6 hamster (120)
and restore the DGC at the sarcolemma of transduced fibers,
thus protecting the myofibers against sarcolemmal damage and
the dystrophic process. Since this study, we and others have
investigated gene transfer approaches further in various animal
models of sarcoglycanopathy. Adenoviruses have now proven
successful at restoring the DGC in β-, γ- and α-SG deficient
mice, animal models for LGMD 2E, 2C and 2D, respectively
(52,121,122), and at preventing the development of muscular
dystrophy (121,122). We recently demonstrated that >80% of
myofibers were transduced efficiently by an adenoviral vector
expressing the human α-SG and that the expression persisted
for at least 7 months after a single intramuscular injection in
the quadriceps muscle of newborn Sgca-null mice (Fig. 3)
(121). Nevertheless, transduction was restricted to the injected
muscle because adenoviral particles cannot cross the fascia
between muscle groups (Fig. 3). Importantly, we ascertained
maintenance of sarcolemal integrity in injected mice by
contrast agent-enhanced magnetic resonance imaging (MRI)
(Fig. 4), a technique that should prove most useful in patients
to assess skeletal muscle damage in the course of muscular
dystrophy and following therapeutic approaches (121,123).

AAV-mediated gene transfer of δ-SG in the BIO 14.6
hamster was shown to correct the dystrophic phenotype (124–
126). Recently, AAV-mediated rescue of skeletal muscle of
γ-SG deficient mice was also demonstrated (122). Neverthe-
less, the transduction efficiency obtained with AAVs consist-
ently appears lower than that of adenovirus (<50% for AAVs
compared with >80% for adenovirus) (121,122).

Considering the relatively small size of AAV particles,
systemic delivery should conceptually be achieved more easily
than with adenoviral vectors. A recent report demonstrated,
albeit on a regional scale, transduction of several muscle
groups of the cardiomyopathic hamster hindlimb following
perfusion of AAV particles using histamine and papaverine to
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enhance diffusion (124). These preliminary results are indeed
encouraging and may open up the way to studies aimed at
improving perfusion techniques.

Significantly, animal models of LGMD 2E (β-SG defi-
ciency) (52) and LGMD 2F (δ-SG deficiency) (50,127) display
cardiomyopathy, as do human patients affected with these
diseases (128–130). Gene transfer to the heart is thus an issue
that needs to be taken into account, and promising results of
transduction of the myocardium were obtained in the hamster
by intrapericardial injection of adenoviral particles containing
a reporter gene (131).

RNA–DNA oligonucleotides

The use of RNA–DNA chimeric oligonucleotides, or chimera-
plasts, recently has been developed in order to correct point
mutations directly in a gene of interest by taking advantage of
the endogenous DNA repair machinery (132). This approach
should therefore allow long-term correction. Two recent
reports demonstrated the rescue of dystrophin expression in

mdx and GRMD skeletal muscle following intramuscular
injections of chimeraplasts (133,134). Expression of dystro-
phin nevertheless was restricted to myofibers directly
surrounding the injection site (133,134) and it thus appears that
other delivery methods may need to be investigated, in partic-
ular systemic delivery, which is theoretically feasible.

PHARMACOLOGICAL THERAPY

Up-regulation of compensatory proteins

As compensation of dystrophin by utrophin in dystrophic skel-
etal muscle appears to be efficient in mice, much effort has
been made in investigating means of up-regulating endogenous
utrophin along the sarcolemma of dystrophin-deficient
myofibers. In that respect, reports that heregulin had the poten-
tial to induce utrophin expression in skeletal muscle held great
promise (135,136). Recently, a novel promoter that potentially
could serve as a target for up-regulation of utrophin was iden-
tified and may widen the possibilities for induction of this
protein (137). A large-scale search for other small molecules
that may up-regulate utrophin currently is under way. The
results will be most interesting and will no doubt generate a
quantity of potential candidates to be tested in vitro and in vivo.

An intriguing study using adenovirus vectors expressing β-
gal or green fluorescent protein in mdx mice recently pointed
out a potential mechanism for endogenous utrophin up-regula-
tion involving cytokines released during the immune response
(138). A better understanding of this mechanism may therefore
provide valuable information for designing strategies to up-
regulate utrophin expression.

Aminoglycoside antibiotics

Possibly the most encouraging therapeutic approach to DMD
has emerged from investigations aimed at treating cystic
fibrosis by suppressing nonsense mutations resulting in prema-
ture stop codons in the cystic fibrosis transmembrane conduct-
ance regulator gene (CFTR) (139,140). Encouraging preliminary
results showed that restoration of dystrophin levels to 10–20%
of normal was detected in skeletal muscle of mdx mice after
subcutaneous injections of gentamicin (141). Importantly,
such levels of dystrophin expression supported functional
benefits to treated muscles. This report constitutes the first in
vivo use of an aminoglycoside antibiotic to overcome a
nonsense mutation. Indeed, more thorough investigations need
to be performed, in particular to assess the secondary effects
due to aminoglycoside antibiotic treatment, mainly nephro-
toxicity and ototoxicity (142). Nevertheless, this class of anti-
biotics holds promise for pharmacological treatment of ∼5–15%
of DMD patients with premature stop mutations. It is worth
mentioning that due to the extended half-life of dystrophin,
such treatment is expected to be long lasting and gentamicin
administration may not need to be repeated too often.

CONCLUSIONS

Despite the advent of and astounding pace of progress in
molecular medicine, the challenges faced in developing thera-
pies for muscular dystrophies that may be applied to human
patients are still daunting, and many more pre-clinical experi-

Figure 3. Adenoviral injection confers sustained expression of human α-SG
and prevents the degeneration–regeneration process. (a) Mice were sacrificed
15 weeks following injection of Ad5RSV-SGCA in the quadriceps femoris of
neonate α-SG-deficient mice. Quadriceps femoris muscles were harvested and
analyzed by immunofluorescence using a rabbit polyclonal antibody against α-
SG. Composites represent images taken at a magnification of 5×. Vl, vastus lat-
eralis; rf, rectus femoris. Bar, 100 µm. (b) Percentage of fibers containing cen-
trally located nuclei in either non-injected (Sgca–/–) or injected (+Ad5RSV-
SGCA) vastus lateralis muscles 15 weeks after intramuscular injection of
Ad5RSV-SGCA. A total of 553 and 2112 fibers were counted from the non-
injected and injected muscles, respectively.
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ments are warranted. In this respect, experiments on animal
models will continue to provide crucial pieces of information
in regard to issues such as the appropriate timing for interven-
tion (the earlier the better seems to be a consensus), the risk–
benefit ratio of current vectors and transgenes, and the assess-
ment of functional benefit. It is worth mentioning that the
accumulation of data on sarcoglycan gene transfer in animal
models of sarcoglycanopathies has provided grounds for a
phase I clinical trial for sarcoglycan-deficient LGMDs (143).
Finally, although more data still need to be obtained, animal
model studies have certainly demonstrated that gene therapy
holds promise for muscular dystrophy and other diseases for
which no other treatments currently are available.
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