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The dystrophin–glycoprotein complex (DGC) is a multisubunit
complex that connects the cytoskeleton of a muscle fiber to its
surrounding extracellular matrix. Mutations in the DGC disrupt
the complex and lead to muscular dystrophy. There are a few
naturally occurring animal models of DGC-associated
muscular dystrophy (e.g. the dystrophin-deficient mdx mouse,
dystrophic golden retriever dog, HFMD cat and the
δ-sarcoglycan-deficient BIO 14.6 cardiomyopathic hamster)
that share common genetic protein abnormalities similar to
those of the human disease. However, the naturally occurring
animal models only partially resemble human disease. In
addition, no naturally occurring mouse models associated with
loss of other DGC components are available. This has
encouraged the generation of genetically engineered mouse
models for DGC-linked muscular dystrophy. Not only have
analyses of these mice led to a significant improvement in our
understanding of the pathogenetic mechanisms for the
development of muscular dystrophy, but they will also be
immensely valuable tools for the development of novel
therapeutic approaches for these incapacitating diseases.
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Abbreviations
CMD congenital muscular dystrophy
DGC dystrophin–glycoprotein complex
DMD/BMD Duchenne or Becker muscular dystrophy
FCMD Fukuyama congenital muscular dystrophy
HFMD hypertrophic feline muscular dystrophy
LGMD limb–girdle muscular dystrophy
Mdx X-chromosome-linked muscular dystrophy
MEB muscle–eye–brain disease
myd myodystrophy
nNOS neuronal nitric oxide synthase

Introduction
Muscular dystrophy is a general term that describes a
group of inherited and gradually debilitating myogenic 
disorders. Genetically, the pattern of inheritance can be
X-linked recessive as in Duchenne or Becker muscular
dystrophy (DMD/BMD), autosomal dominant as in
limb–girdle muscular dystrophy type 1 (LGMD type 1), or
autosomal recessive as in limb–girdle muscular dystrophy
type 2 (LGMD type 2). DMD is the most common type 
of muscular dystrophy affecting approximately 1 out of
3500 males whereas the limb–girdle muscular dystrophies
affect roughly 1 out of 20,000. Clinically, the muscular 

dystrophies are a heterogeneous group of disorders.
Patients with DMD have a childhood onset phenotype and
die by their early twenties as a result of either respiratory
or cardiac failure, whereas patients with BMD have 
moderate weakness in adulthood and may have normal life
spans. The limb–girdle muscular dystrophies have a 
highly variable onset and progression, but the unifying
theme among the limb–girdle muscular dystrophies is the
initial involvement of the shoulder and pelvic girdle 
muscles. Moreover, muscular dystrophies may or may not
be associated with cardiomyopathy [1–4].

Combined positional cloning and candidate gene
approaches have been used to identify an increasing number
of genes that are mutated in various forms of muscular 
dystrophy. According to the genetic basis, muscular dystro-
phies have now been reclassified and close to 30 genes
have been implicated to cause muscular dystrophy (see [5]
for review; see also Table 1). The first gene to be cloned
was the dystrophin gene that is mutated in DMD and
BMD [6]. Soon after the discovery of dystrophin, the 
dystrophin–glycoprotein complex (DGC) was identified
and these studies opened up a new avenue of muscular
dystrophy research [7–9]. Within the past couple of years,
several targeted mouse models for DGC-associated 
muscular dystrophy have been generated and these mouse
models, which are the focus of this review, have signifi-
cantly contributed to understanding the pathogenetic
mechanisms of muscular dystrophy.

Dystrophin–glycoprotein complex
The DGC is a large complex of membrane-associated 
proteins that is critical for the integrity of skeletal muscle
fibers. This complex consists of dystrophin, the dystroglycans
(α and β), the sarcoglycans (α, β, γ and δ), sarcospan, the 
syntrophins (α1, β1, β2; γ1- and γ2-syntrophins have been
identified in neurons) and α-dystrobrevin [7,8,10–21].
Dystrophin binds to cytoskeletal actin and to the transmem-
brane protein β-dystroglycan; the extracellular domain of
β-dystroglycan binds to the peripheral membrane protein,
α-dystroglycan; and α-dystroglycan binds laminin-2 in the
basal lamina [22–24] (see Figure 1). Furthermore, α-dystro-
glycan has been shown to bind the heparane sulfate
proteoglycans agrin and perlecan and to the chondroitin 
sulfate proteoglycan biglycan [25–28]. In addition, α-dystro-
glycan was recently shown to bind neurexin in neurons [29].
Perlecan and agrin are, along with laminin-2, also present in
the basement membrane of the skeletal muscle. Thus, the
DGC serves as a link between the extracellular matrix and
the subsarcolemmal cytoskeleton and the DGC is thought to
protect muscle cells from contraction-induced damage
[30–31]. In agreement with this hypothesis, mutations in
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genes encoding dystrophin, all four sarcoglycans and the
laminin α2 chain are responsible for DMD/BMD, limb–girdle
muscular dystrophy type 2C-F and congenital muscular 
dystrophy (CMD), respectively [6,11,14–17,32,33]. Not only
does the DGC have structural roles but it may also play a role
in signaling. Several signaling molecules bind DGC core
components. Grb2, a signal transduction adapter protein,
binds β-dystroglycan [34]. The filamins have been implicated
as signal transducers and a member of the filamin family, fil-
amin 2, interacts with γ- and δ-sarcoglycan [35]. Furthermore,
dystrophin interacts with two classes of cytoplasmic mole-
cules, the syntrophins [36,37] and dystrobrevins, which have

been implicated in signaling [21]. α1-syntrophin contains a
PDZ-domain (a protein–protein interaction motif) that inter-
acts with at least two sarcolemmal proteins involved in signal
transduction, neuronal nitric oxide synthase (nNOS) [38] and
voltage-gated sodium channels [39,40]. Similarly, the PDZ-
domain of β2-syntrophin (expressed at the neuromuscular
junction where it binds the dystrophin homologue utrophin)
interacts with the PDZ-domain-containing microtubule-
associated serine/threonine kinases MAST205 and SAST
[41]. α-dystrobrevin binds syntrophins in addition to 
dystrophin and is a substrate for tyrosine kinases [42,43].
Moreover, biochemical evidence was recently presented for
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Table 1

Muscular dystrophies and corresponding mouse models.

Disease
Mode of inheritance and
gene locus Gene product Mouse models

X-linked MD
Duchenne/Becker MD XR Xp21 Dystrophin Mdx
Emery–Dreifuss MD XR Xp28 Emerin –

Limb–girdle MD
LGMD 1A AD 5q31 Myotilin –
LGMD 1B AD 1q11 Lamin A/C Lmna–/– [121]
LGMD 1C AD 3p25 Caveolin-3 Cav3–/–

LGMD 1D AD 6q23 ? –
LGMD 1E AD 7q32 ? –
LGMD 1F AD 5q31 ? –
LGMD 2A AR 15q15 Calpain-3 Capn3–/– [122]
LGMD 2B AR 2p13 Dysferlin SJL [123]
LGMD 2C AR 13q12 �-sarcoglycan Sgcg–/–

LGMD 2D AR 17q12 �-sarcoglycan Sgca–/–

LGMD 2E AR 4q12 �-sarcoglycan Sgcb–/–

LGMD 2F AR 5q33 �-sarcoglycan Sgcd–/–

LGMD 2G AR 17q11 Telethonin –
LGMD 2H AR 9q31 TRIM31 [124] –
LGMD 2I AR 19q13 Fukutin-related protein [125] –

Distal MD
Miyoshi myopathy AR 2p13 Dysferlin SJL [123]
Tibial MD AD 2q31 ? –

Congenital MD
Classical or pure CMD AR 6q22 Laminin �2 dy
Fukuyama CMD AR 9q31 Fukutin –
MDC1C
�7 integrin CMD

AR
AR

19q13
12q13

Fukutin-related protein [125]
�7 integrin

–
Itga7–/–

Ulrich CMD
Walker Warburg syndrome [127]
Rigid spine CMD

AR
AR
AR

?
?
1p35

Collagen VI �2 [126]
?
Selenoprotein N [128]

–
–
–

Muscle–eye–brain disease AR 1p32 POMGnT1 –

Other forms of MD
Emery-Dreifuss MD AD 1q11 Lamin A/C Lmna–/– [121]
Bethlem myopathy AD 21q22 Collagen V1 �1 Col6�1–/– [129]
Bethlem myopathy AD 21q22 Collagen V1 �2 –
Bethlem myopathy AD 2q37 Collagen V1 �3 –
? ? ? Collagen XV [130] Col15�1–/–

EB and MD AR 8q24 Plectin Plectin–/– [131]
Facioscapulohumeral MD AD 4q35 ? –
Scapuloperoneal MD AD 12q21 ? –
Oculopharyngeal MD AD 14q11.2 Poly A binding protein 2 –
Myotonic dystrophy AD 19q13 Myotonin-protein kinase/Six5 Six5–/– [132,133]

A summary list of muscular dystrophies, their Mendelian inheritance pattern, chromosomal location, mutated proteins and available mouse
models. MD, muscular dystrophy; LGMD, limb–girdle muscular dystrophy; CMD, congenital muscular dystrophy; EB, epidermolysis bullosa; XR,
X-linked recessive; AD, autosomal dominant; AR, autosomal recessive. For primary references on the muscular dystrophies, their mode of
inheritance, gene locus, mutated proteins and available mouse models, please see [5] and main text.



an association of α-dystrobrevin with the sarcoglycan–sarcospan
complex, indicating that the sarcoglycan complex is linked to
nNOS signaling via α-syntrophin/α-dystrobrevin [44].

All vertebrates seem to have well-defined sequences encoding
dystrophin and its homologues, utrophin and DRP-2.
Dystrophin-like sequences have also been identified in inver-
tebrates such as amphioxus, sea squirt, starfish, scallop, fruit fly
and nematode [45]. In each case, phylogenetic analyses
showed the invertebrate dystrophins to be orthologues of the
last common ancestor of dystrophin, utrophin and DRP-2.
Given the diversity of the remainder of the components of the
vertebrate DGC, how much simpler is the invertebrate 
counterpart? The release of the complete sequences of the
Drosophila melanogaster and Caenorhabditis elegans genomes
have afforded the opportunity to assess the invertebrate reper-
toire of the DGC, using a combination of in vitro and in silico
techniques [46,47] (Table 2). In summary, seventeen known
human/mouse components (three dystrophin-related proteins,
two dystrobrevins, five sarcoglycans, five syntrophins, one 

dystroglycan and one sarcospan) appear to be reduced to eight
in Drosophila (one dystrophin, one dystrobrevin, three sarco-
glycans, two syntrophins, one dystroglycan and no sarcospan)
[46]. Furthermore, C. elegans retains all essential human/mouse
counterparts of the DGC, but with less diversity [47].

Among the DGC components, only dystrophin and the
sarcoglycans are linked to muscular dystrophy. To date, no
human mutations have been found in dystroglycan, 
sarcospan, the syntrophins or the dystrobrevins. Mouse 
models for each of the core components of the DGC exist,
however, and each mouse model (for a summary, see Table 3)
will be discussed in relationship to muscular dystrophy. 

Animal models for deficiency of dystrophin
and dystrophin-binding proteins
Dystrophin
The mdx (X-chromosome-linked muscular dystrophy)
mouse is the best-characterized mouse model for muscular
dystrophy: >500 papers have been published in its analysis.
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Figure 1

The DGC in skeletal muscle is composed of
dystrophin, the dystroglycans (α, β), the
sarcoglycans (α, β, γ, δ), sarcospan, the
syntrophins (α, β1) and dystrobrevin (α).
There is a growing number of proteins
reported to be associated with the DGC in
the muscle cell. Depicted are nNOS, which
interacts with the syntrophin complex and
laminin-2, which is one of many extracellular
ligands of α-dystroglycan. Several forms of
muscular dystrophy arise from primary
mutations in genes encoding components of
the DGC. Mutations in dystrophin, all four
sarcoglycans and the laminin α2 chain are
responsible for DMD/BMD, LGMD type 2C-F
and CMD, respectively. In addition, several
forms of CMD are caused by abnormal
glycosylation of α-dystroglycan (not illustrated).
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As a result of a point mutation in exon 23 of the dystrophin
gene, the mdx mouse is missing dystrophin [48]. Absence of
dystrophin in skeletal muscle also affects the expression of
the other DGC components at the sarcolemma [49].
Although this mouse has proved to be a valuable model for
DMD, the progressive muscle-wasting disease presents itself
in a much milder form than in humans [50] at least in certain
muscles. The most affected muscle in the mdx mouse is the
diaphragm, which reproduces the degenerative changes of
muscular dystrophy [51] and the specific twitch force, specific
tetanic force and maximum power are all significantly
reduced in diaphragm [52]. The mdx mice show signs of
muscular dystrophy in other muscles during their first six
week of life but subsequently show little weakness and have
a near-normal lifespan. This partial ‘recovery’ is as a result of
substantial regeneration. The mdx mouse adapts to muscle
degeneration with an expansion of the satellite cell population
and muscle hypertrophy. Transcription factors seem to be
important for this successful regeneration. Mdx mice lacking
the muscle-specific transcription factor MyoD show a more

severe dystrophy due to a deficiency in regenerative capabilities
of the muscle [53]. Likewise, mdx mice deficient in the
myocyte nuclear factor, which is selectively expressed in
satellite cells, exhibit an exacerbated dystrophic phenotype
as a result of satellite-cell dysfunction [54].

Another possible explanation for the mild phenotype of
the mdx mouse is that the homologous protein utrophin
compensates for the lack of dystrophin. Indeed, mice 
lacking both dystrophin and utrophin show many signs of
DMD in humans: they have a reduced life-span (dying
between 4 and 20 weeks), they suffer from severe muscle
weakness with joint contractures, pronounced growth
retardation, kyphosis and cardiomyopathy, suggesting that
dystrophin and utrophin play complementary roles [55,56].
The dystrophic phenotype of the utrn–/–/mdx mouse was
subsequently ameliorated by skeletal-muscle-specific
expression of truncated utrophin, indicating that
utrn–/–/mdx mice succumb to a skeletal muscle defect and
that their reduced life-span is not as a result of either 
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Table 2

DGC components in various organisms.

Protein
Mus musculus
Acc No

Drosophila
Acc No

C. elegans
Acc No

Danio rerio
Acc No

Dystroglycan Dystroglycan
X86073

Dystroglycan (DG)
AF277390

Dystroglycan
Z68011

Dystroglycan
BF157619

�-sarcoglycan �-sarcoglycan
AF064081

��-sarcoglycan (SCG����

AF277391
��-sarcoglycan
AF077544

�

�-sarcoglycan �-sarcoglycan
AF169288

�-sarcoglycan (SGC�)
AF277392

�-sarcoglycan
AF099925

�-sarcoglycan
AA495110

�-sarcoglycan �-sarcoglycan
AF282901

��-sarcoglycan (SCG����

AF277393
��-sarcoglycan
Z68314

�

�-sarcoglycan �-sarcoglycan
AB024923

��-sarcoglycan (SCG����

AF277393
��-sarcoglycan
Z68314

�-sarcoglycan
AI877617

�-sarcoglycan �-sarcoglycan
AF031919

��-sarcoglycan (SCG����

AF277391
��-sarcoglycan
AF07754

�-sarcoglycan
AW281123

Sarcospan Sarcospan
NM_010656

Not determined ? ?

Dystrophin and
homologues

Dystrophin,
Utrophin,
DRP-2

Dystrophin (DYS)
X99757

Dystrophin (dys-1)
AJ012469

Dystrophin
AJ012469

NM_007868
YI2229
U43520

Dystrobrevins �-, �-dystrobrevin
NM_010087
AJ003007

Dystrobrevin (DYB)
AF277387

Dystrobrevin (dyb-1)
AJ131742

?

Syntrophins �1-, �1-, �2-
syntrophins

Syntrophin-1 (SYN1)
AF277388

�1-syntrophin
Z81072

�1-syntrophin
AW280633

NM_009228
U89997
U40572a

�1-, �1-syntrophins
NM_018967a

NM 018968a

Syntrophin-2 (SYN2)
AF277388

a Human sequences. A summary list of DGC sequences from mouse, fruitfly, nematode and zebrafish. Accession (Acc) numbers (underlined)
were extracted from GenBank entries for genomic and cDNA clones (see also [46,47]).



cardiac or neurogenic components [57]. Although the mdx
mouse has the capability to adapt to muscle degeneration
and utrophin to some extent can compensate for the loss of
dystrophin, it should be noted that the serum levels of 
creatine kinase are elevated in these mice [58], which is a
typical diagnostic criteria for muscular dystrophies.

Other than dystrophin, several shorter isoforms are also
generated from the dystrophin gene through differential
promoter usage. Transcripts from four internal dystrophin
promoters produce proteins of 260, 140, 116 and 71 kDa
(Dp260, Dp140, Dp116 and Dp71) [59–62]. Dp260 is
expressed predominantly in retina [61]. Dp140 is localized
in brain and kidney [62,63] and Dp116 is expressed exclu-
sively in Schwann cells [59]. Dp71 is expressed at high
levels in almost all tissues except skeletal muscle [60]. Yet,
mice with a targeted inactivation of Dp71 display no 
obvious phenotype [64]. The mdx2cv-5cv are other mutant
mice generated by chemical mutagenesis using N-ethyl-
nitrosurea [65]. The mdx3cv has a mutation at the 3′ end of
the dystrophin gene, thus resulting in deficiency of the
shorter isoforms. Absence of all dystrophin isoforms along
with utrophin, however, does not worsen the dystrophic
phenotype compared to the utrn–/–/mdx mouse [66]. 

Attempts have also been made to produce a dystrophin
gene knockout mouse (mdx52). Araki et al. deleted exon 52
of dystrophin to produce a mouse with a similar phenotype
to the mdx mouse [67].

Syntrophin
α1-syntrophin is strongly expressed at the sarcolemma and
is a core protein of the DGC [7,37]. Yet, mice deficient in
α1-syntrophin display no gross histological changes in the
skeletal muscle and muscle contractile properties are not
altered in these mice [68,69]. nNOS is misplaced from the
sarcolemma of these mice and so is aquaporin-4, a mercurial-
insensitive water-selective channel [70]. Aquaporin-4 is
also absent in skeletal muscle of mdx mice [71]. Yet, the
role of aquaporin-4 in the pathogenesis of muscular dystrophy
is unclear as aquaporin-4-deficient mice maintain normal
muscle function [72]. α1-syntrophin is also expressed
abundantly at the neuromuscular junction, and recent
studies reveal that absence of α1-syntrophin leads to 
structurally aberrant neuromuscular synapses deficient in
utrophin [69].

Dystrobrevin
The best-studied functions of the DGC involve structural
stabilization of the sarcolemma: mutations of several 
DGC components appear to cause muscular dystrophy by 
disassembling the complex and compromising the linkage
between the extracellular matrix of the fibers to its
cytoskeleton. Mice deficient in α-dystrobrevin maintain
the expression of the DGC at the sarcolemma; yet, these
mice develop a mild muscular dystrophy. Analysis of
α-dystrobrevin mice revealed that muscular dystrophy
might also develop as a result of impaired DGC-dependent
signaling. The mechanism behind the disrupted signaling
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Table 3

Summary of DGC-associated mouse models.

Genotype (protein absent) Life-span Skeletal dystrophy Cardiomyopathy

Sgca–/– (�-sarcoglycan) >1 yr Moderate None
Sgcb–/– (�-sarcoglycan) >1yr Severe Severe
Sgcg-/- (�-sarcoglycan) 20 wks Severe Severe
Sgcd–/– (�-sarcoglycan) >1yr Severe Severe
Sspn–/– (sarcospan) >1yr None None
DG–/– (dystroglycan) Embryonic lethal NA NA
DG chimeric (dystroglycan absent in skeletal and cardiac muscle) >1yr Moderate? Severe
Myd (large) Reduced Moderate None
Mdx (dystrophin) >1yr Mild/moderate Mild
Mdx2cv (dystrophin, Dp260) >1yr Mild/moderate Mild
Mdx3cv (dystrophin, Dp71, Dp116, Dp140, Dp260) >1yr Mild/moderate Mild
Mdx4cv (dystrophin, Dp140, Dp260) >1yr Mild/moderate Mild
Mdx5cv (dystrophin) >1yr Mild/moderate Mild
Mdx52 (dystrophin, Dp140, Dp260) >1 yr Mild/moderate None
Dp71–/– >6 months None None
Mnf/mdx (myocyte nuclear factor, Dystrophin) ~3 wks Severe NT
MyoD/mdx (MyoD, dystrophin) 1 yr Severe Severe
NNOS–/– (neuronal nitric oxide synthase) >1yr None None
nNOS/mdx >1yr Mild/moderate Mild
Utrn–/– (utrophin) >1yr None None
Utrn–/–/mdx (utrophin, dystrophin) 4–20 wks Severe Severe
Utrn–/–/mdx3cv (utrophin, dystrophin, Dp 260, Dp140, Dp116, Dp71) 4–20 wks Severe Severe
Adbn–/– (�-dystrobrevin) >1 yr Mild Mild
Adbn–/–/mdx (�-dystrobrevin, dystrophin) 8–10 months Moderate Moderate
Utrn–/–/mdx/adbn–/– (utrophin, dystrophin, �-dystrobrevin) 3–11 wks Severe Severe
�1-syntrophin–/– >1yr None None
Cav-3–/– (caveolin-3) >30 wks Mild None

NA, not applicable; NT, not tested. (For references, please see main text.)



remains to be determined but nNOS may be involved.
During exercise, nNOS activity is stimulated to produce
cyclic GMP, which is necessary to maintain the blood flow
in the active muscle. In electrically stimulated muscle of
α-dystrobrevin deficient mice, cyclic GMP levels are not
affected in agreement with the finding that nNOS is 
displaced from the muscle membrane [21]. Yet, loss of
nNOS alone is unlikely to account for the dystrophy in
α-dystrobrevin-deficient mice, as mice lacking nNOS are
not dystrophic [73]. Moreover, the genetic loss of nNOS
does not alter the pathogenesis of mdx mice [74]. However,
recent studies suggest that at least part of the muscle
degeneration observed in DMD patients may result from
the reduced production of muscle-membrane-associated
nNOS. This reduction may lead to improper control of the
vasculature and eventual local muscle ischemia [75].

Caveolin-3
Caveolin-3 is a muscle-specific protein integrated in the
caveolae, which are small invaginations of the plasma
membrane. Mutations in the human caveolin-3 gene cause
mild muscular dystrophy (LGMD 1C) [76]. Moreover,
caveolin-3 has by immunoprecipitation experiments been
shown to interact with dystrophin [77] but it is not an 
integral component of the DGC [78]. Very recently, 
caveolin-3-deficient mice were generated [79,80]. These
mice exhibit very mild myopathic changes [79,80].
Interestingly, Lisanti and co-workers showed that cave-
olin-3 expression is required for correct targeting of the
DGC to cholesterol-sphingolipid raft domains/caveolae in
normal muscle fibers [80].

Animal models for dystroglycan deficiency
Dystroglycan was originally isolated from skeletal muscle
but has since been shown to be expressed in a wide variety
of tissues and is now considered to be the most broadly
expressed DGC component [10,81]. Besides muscle, 
dystroglycan is expressed at high levels in developing and
adult tissues, typically in cell types that adjoin basement
membranes such as epithelial and neural tissue [82–84].
Early in vitro work demonstrated a role for dystroglycan in
epithelial morphogenesis [82]. In 1997, the dystroglycan
gene was disrupted in mouse [85]. Dystroglycan null
embryos fail to progress beyond the early egg cylinder
stage of development and are characterized by structural
and functional perturbations of Reichert’s membrane, one
of the earliest basement membranes that form in the
rodent embryo. Subsequent work demonstrated a role for
dystroglycan in the formation of the basement membrane
of the embryoid body [84]. Because dystroglycan null
embryos die early in development prior to gastrulation 
(i.e. long before any muscle has formed) it is not possible
to analyze the consequences of dystroglycan deficiency in
muscle. To overcome this, Carbonetto and co-workers 
generated chimeric mice, lacking dystroglycan in skeletal
muscle [86]. Interestingly, these mice develop progressive
muscle pathology with changes emblematic to muscular
dystrophies in humans. In addition, many neuromuscular
junctions are disrupted in these mice. Thus, dystroglycan
is necessary for myofiber stability and synapse differentiation
or stability. Surprisingly, the basement membrane in the
chimeric mice is not grossly perturbed. Yet, the sarcoglycans
and dystrophin are absent from the dystroglycan-deficient
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Figure 2

Microfil perfusion of the vasculature.
(a,b) Vessels of 4-week-old heart and
diaphragm from wild-type mice show smoothly
tapered vessel walls. (c,d) In contrast, vessels
of the heart and diaphragm from Sgcb-null
mice (deficient in β-sarcoglycan) show
numerous constrictions (denoted by arrows).

Wt heart Wt diaphragm

Sgcb null heart Sgcb null diaphragm
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muscle fibers suggesting that that the sarcolemmal basement
membrane interactions are weakened and/or disorganized.

It is becoming increasingly clear that posttranslational modifi-
cations of muscle cell proteins, in particular α-dystroglycan,
are important for normal muscle function. Grewal et al. [87••]
recently presented very intriguing data on the importance of
correct glycosylation of α-dystroglycan. The myodystrophy
mouse (myd) harbors a mutation in the glycosyltransferase,
Large, which leads to altered glyco-sylation of α-dystroglycan
(however, with no apparent shift in the molecular weight 
of α-dystroglycan) and mutant mice develop a progressive
myopathy [87••]. Furthermore, muscle–eye–brain disease
(MEB) is a type of congenital muscular dystrophy associated
with loss-of-function mutations in the gene encoding a 
glycosyltransferase, POMGnT1 [88••]. POMGnT1 is a 
glycosylation enzyme that participates in the synthesis of
O-mannosyl glycan, a modification that is rare in mammals
but is present in α-dystroglycan. Kano et al. [89•] recently
reported a deficiency of α-dystroglycan, but not β-dystro-
glycan in MEB patients. A similar selective secondary 
deficiency of heavily glycosylated α-dystroglycan was also
noted in Fukuyama congenital muscular dystrophy (FCMD;
in which the gene encoding fukutin is affected) [90]. In 
summary, a growing body of evidence indicates that some
muscular dystrophies may be caused by abnormal glyco-
sylation of α-dystroglycan. The mechanistic basis for these
disorders is yet to be determined.

Animal models for laminin-2 deficiency
In skeletal muscle, α-dystroglycan binds to the basement
membrane protein laminin-2 (composed of laminin α2, β1 and
γ1 chains) [24]. About 50% of the patients diagnosed with 
classical CMD show a primary deficiency of the laminin
α2 chain and basement membrane perturbations [91]. Several
mouse models for laminin-2 deficiency now exist, including
the dy (dystrophia-muscularis) mouse, originally identified at
the Jackson Laboratory [24,92,93], and an allelic mutant of the
dy mouse, dy2J [94]. Neither of these mouse models exhibits
a complete deficiency of laminin α2 chain. Yet, they both 
display a muscular dystrophy, although the muscular dystrophy
in the dy2J presents itself in a milder form compared to the dy
mouse. Several laboratories have also generated null mutants
for laminin α2 chain (dy3K, dyW) and all of these mouse models
present a severe muscular dystrophy caused by the failure to
form a laminin scaffold, which is necessary for basement 
membrane structure and for interactions with the DGC and
integrins [95,96]. Interestingly, a mini agrin gene, which
retained high-affinity binding sites for the laminins that are
upregulated in dyW mice (laminin α4 and laminin α5 chains)
and α-dystroglycan compensated for the loss of laminin α2
chain [97••]. This suggests that even a non-homologous high-
affinity link between dystroglycan and the extracellular matrix
is sufficient to prevent muscular dystrophy.

Animal models for integrin deficiency
Laminins also bind integrins, which are a large family of 
heterodimeric transmembrane cell surface receptors that

function in a wide variety of cell interactions [98]. In skeletal
muscle, the α7β1 integrin is the predominant integrin that
binds laminin-2 [99]. It is possible that the functions of the
DGC and the integrin α7 complex in skeletal muscle to
some extent overlap. Mice lacking integrin α7 display a mild
myopathy [100] and, interestingly, mice lacking both 
integrin α7 and dystrophin develop a severe dystrophy and
die between 3–4 weeks of age (U Mayer, unpublished data).
The fact that the expression of integrin α7 transcript and
protein is increased in mdx mice and in DMD patients 
further suggests that the integrin α7β1 may compensate for the
absence of the DGC [101,102]. Indeed, transgenic expression
of the α7β1 integrin reduces muscular dystrophy and
restores viability in the dystrophic utrn–/–/mdx mouse [103].
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Figure 3

Schematic diagram of sarcoglycan complexes in muscle. (a) Mouse
skeletal muscle was stained with β-sarcoglycan antibodies. 
(b) Normal skeletal muscle contains two sarcoglycan complexes: an
α-sarcoglycan and an ε-sarcoglycan containing complex. The former is
composed of α-, β-, γ- and δ-sarcoglycan whereas the latter is
composed of at least ε-, β- and δ-sarcoglycan and perhaps
γ-sarcoglycan (denoted by a broken line). Note that only the
sarcoglycan complexes (and not the entire DGC) are illustrated.
(c) Mouse cardiac muscle was stained with β-sarcoglycan antibodies.
(d) Two sarcoglycan complexes are also present within cardiac
muscle. (e) Pulmonary artery is positively stained with β-sarcoglycan
antibodies. (f) The smooth muscle sarcoglycan complex is composed
of ε-, β-, γ- and δ-sarcoglycan.
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Although α7β1 integrin is the predominant integrin that
binds laminin-2 in skeletal muscle, other integrins are
important for normal muscle function too. Mice chimeric
for the expression of integrin α5 (receptor for fibronectin)
also develop a myopathy [104].

In summary, these data suggest that both the DGC and
integrins are involved in anchoring the muscle fiber to its
extracellular matrix and that disruption of this anchorage
results in muscle instability and subsequently cell death.

Animal models for sarcoglycan–sarcospan
deficiency
The sarcoglycan complex is a group of single-pass 
transmembrane proteins (α-, β-, γ- and δ-sarcoglycan) that
is tightly associated with sarcospan to form a subcomplex
within the DGC [105]. Although the exact function of the
sarcoglycan–sarcospan complex is not known, it is well
established that mutations in any of α-, β-, γ- and δ-sarco-
glycan genes result in distinct forms of muscular dystrophy
now collectively called sarcoglycanopathies [11,14–18,32].
A primary mutation in any one of these genes may lead to
either total or partial loss of that sarcoglycan as well as a
secondary deficiency of the other sarcoglycans [106].
Furthermore, sarcospan expression is dependent on proper
expression of the sarcoglycans [58,105,107]. To date, 
however, no human mutations have been found in the 
sarcospan gene, nor have any unclassified muscular dystro-
phies been mapped to the chromosomal location of
sarcospan [107]. Moreover, sarcospan-deficient mice main-
tain their sarcolemmal expression of DGC and maintain
normal muscle function [108].

The sarcoglycans are primarily expressed in muscle. α-, β-,
γ-, and δ-sarcoglycan are, along with sarcospan, expressed
in skeletal and cardiac muscle [109]. In smooth muscle, on
the other hand, a unique sarcoglycan–sarcospan complex 
is expressed. The smooth muscle sarcoglycan complex is
composed of ε-sarcoglycan (an α-sarcoglycan homologue)
instead of α-sarcoglycan, along with β-sarcoglycan, 
γ-sarcoglycan and δ-sarcoglycan [81,109,110•]. The sarco-
glycan–sarcospan complex is in smooth muscle also
associated with dystroglycan. However, dystroglycan in
smooth muscle is differentially glycosylated compared to
dystroglycan in skeletal muscle [109].

Recent data from several laboratories, including ours, have
demonstrated that proper expression of the sarcoglycans in
skeletal muscle is a necessity for normal skeletal muscle
function [58,111–114,115••]. Furthermore, we have recently
demonstrated that proper expression of the sarcoglycans in
smooth muscle is also of great importance for normal skeletal
and cardiac muscle function [112,115••].

Mice deficient in α-sarcoglycan (Sgca null mice), which is
exclusively expressed in striated muscle, develop a 
progressive muscular dystrophy and a concomitant 
deficiency in β-, γ- and δ-sarcoglycan along with sarcospan

in skeletal muscle. Furthermore, α-dystroglycan is greatly
destabilized at the sarcolemma, indicating that membrane
expression of the sarcoglycans is a prerequisite for 
membrane targeting and stabilization of α-dystroglycan.
The sarcoglycan–sarcospan complex is also significantly
reduced in cardiac muscle of Sgca null mice. Yet, these
mice do not develop cardiomyopathy [58]. The reason for
this became clear when β- and δ-sarcoglycan-deficient
mice were generated and analyzed in our laboratory
[112,115••]. Mice deficient in β- and δ-sarcoglycan (Sgcb
null mice and Sgcd null mice, respectively) that are
expressed in both striated and smooth muscle also develop
a progressive muscular dystrophy, which seems to be more
severe than in Sgca null mice. Large, focal areas of necrosis/
fibrosis are present in skeletal muscle of Sgcb and Sgcd
null mice, a phenomenon that is not detected in Sgca 
null mice. Both Sgcb and Sgcd null mice also develop 
cardiomyopathy and morphologically this is recognized 
by extensive areas of necrosis/fibrosis in the hearts.
Additionally, the serum levels for cardiac-specific 
troponin I are elevated in these mice in agreement with
the presence of acute myocardial necrosis that precedes
the formation of fibrotic lesions [112,115••,116••].
Furthermore, deficiency of β- and δ-sarcoglycan leads to
perturbed expression of the entire sarcoglycan–sarcospan
and dystroglycan complexes not only in striated muscle
but also in vascular smooth muscle. The loss of the sarco-
glycan–sarcospan complex in smooth muscle and the
presence of the focal areas of necrosis in skeletal and car-
diac muscle prompted us to analyze the blood vessels more
closely in Sgcb and Sgcd null mice. Using the Microfil per-
fusion technique, we found vascular irregularities in the
form of arterial constrictions in both heart and skeletal
muscle and also in the kidneys of Sgcb and Sgcd null mice
([112,115••]; M Durbeej, KP Campbell, unpublished data)
(see Figure 2). Importantly, the disturbance of the vasculature
precedes the onset of ischemic-like lesions. Moreover, no
vascular perturbations are present in Sgca null mice.
α-sarcoglycan is not expressed in smooth muscle — the
smooth muscle sarcoglycan is thus intact in Sgca null mice.
Still, Sgca null mice are dystrophic. Together, these data
suggest that muscle degeneration does not cause the 
vascular phenotype. Instead, loss of the sarcoglycan–sar-
cospan complex in smooth muscle of blood vessels results
in vascular irregularities that aggravate skeletal pathology
and initiate heart pathology as a result of diminished 
delivery of oxygen and nutrients [112,113••,116••]. 

Biochemical analysis of sarcoglycan deficient mice
revealed the presence of a new sarcoglycan complex 
in skeletal and cardiac muscle ([114,115••]; M Durbeej,
KP Campbell, unpublished data). This additional sarcoglycan
complex is composed of at least ε-, β-, and δ-sarcoglycan,
but neither dystrophin or utrophin [115••] (Figure 3).
Thus, β- and δ-sarcoglycan mutations, but not α-sarcoglycan
mutations, affect the expression of this complex, which is
subsequently absent in Sgcb and Sgcd null mice but not
Sgca null mice. Hence, loss of the ε-sarcoglycan complex
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may also contribute to the more severe pathology seen in
Sgcb and Sgcd null mice. Whether γ-sarcoglycan is part of
the ε-sarcoglycan complex is not clear. ε-sarcoglycan
expression remains in γ-sarcoglycan-deficient mice [111].
However, immunoprecipitation experiments indicate 
that γ-sarcoglycan is indeed part of the ε-sarcoglycan 
complex [114]. Clearly, more studies are needed to clarify
this discrepancy. 

In summary, a complex pathogenetic mechanism for the
development of LGMD 2E and F can be postulated.
Deficiency of β- and δ-sarcoglycan causes loss of the sarco-
glycan–sarcospan and dystroglycan complexes as well as loss
of the ε-sarcoglycan-containing complex in striated muscle.
Since the linkage between the extracellular matrix and the
muscle cell is perturbed, the skeletal and cardiac muscle
membranes become unstable. Thus, the muscle cells may be
more prone to ischemic damage that develops as a conse-
quence of the absent smooth muscle sarcoglycan complex. 

Although α-, β-, γ- and δ-sarcoglycans are part of the same
complex, the individual sarcoglycans may exhibit different
functional roles. Several lines of evidence support this
idea. First, ecto-ATPase activity has been noted for
α-sarcoglycan, indicating that α-sarcoglycan might function
in controlling the ATP concentration at the surface of the
muscle cell [117]. Second, mice deficient for γ-sarcoglycan
exhibit a severe muscular dystrophy and cardiomyopathy
[111]. Without γ-sarcoglycan, β- and δ-sarcoglycan are
unstable at the muscle membrane and α-sarcoglycan is
severely reduced. The expression of dystroglycan, however,
is not altered and thus the link between the extracellular
matrix and the intracellular cytoskeleton appears unaffected.
Moreover, γ-sarcoglycan-deficient muscle show normal
resistance to mechanical strain, normal peak isometric and
tetanic force generation and no evidence for contraction-
induced injury after exercise [118]. Thus, a nonmechanical
mechanism (perhaps signaling) may be responsible for
γ-sarcoglycan-deficient muscular dystrophy. These results
are in sharp contrast to muscles of Sgca, Sgcb and Sgcd null
mice, which show abnormal resistance to stretch, and a
decrease in specific force generation ([58,112]; M Durbeej,
KP Campbell, unpublished data).

Conclusions
Animal models lacking each component of the DGC have
provided many new insights into the development of 
muscular dystrophy. Specifically, we have learned that
muscular dystrophy can develop when DGC core compo-
nents such as sarcoglycans, dystroglycan and dystrobrevins
are missing from the skeletal muscle. In addition, muscular
dystrophy can also develop when laminin-2 and integrins
are absent. More importantly, analysis of these mouse
models has unraveled novel pathogenetic mechanisms for
the development of muscular dystrophy. For example, 
perturbation of vascular function together with the disruption
of the ε-sarcoglycan complex contribute to the increased
severity of mouse models of LGMD type 2E and F.

Furthermore, these animal models will be tremendously
valuable tools for testing novel therapeutic approaches. In
fact, the feasibility of sarcoglycan gene transfer for sarco-
glycanopathies has already been investigated using some
of the sarcoglycan-deficient mice. These studies demon-
strate that mutations in individual sarcoglycan components
can be corrected in vivo ([119•,120•]; M Durbeej,
KP Campbell, unpublished data). Moreover, the mouse
models will be of immense benefit for evaluating possible
drug therapies for muscular dystrophy and cardiomyopathy.
For example, nicorandil, a vascular smooth muscle relaxant,
prevents the acute onset of myocardial necrosis in Sgcd
null mice [112]. Furthermore, recent studies in our laboratory
suggest that verapamil, a pharmacological agent with
vasodilator properties, successfully prevents cardiomyopathy
in sarcoglycan-deficient mice by abolishing the vascular
dysfunction [116••]. Taken together, the successful treat-
ment of cardiomyopathy using agents with clinical
relevance in mouse models lacking the smooth muscle
sarcoglycan–sarcospan complex connotes that efforts
toward drug therapies can be of tremendous benefit 
preventing certain forms of hereditary cardiomyopathy and
perhaps muscular dystrophy.
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