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The ability to repair membrane damage is conserved across

eukaryotic cells and is necessary for the cells to survive a

variety of physiological and pathological membrane

disruptions. Membrane repair is mediated by rapid Ca2+-

triggered exocytosis of various intracellular vesicles, such as

lysosomes and enlargeosomes, which lead to the formation of

a membrane patch that reseals the membrane lesion. Recent

findings suggest a crucial role for dysferlin in this repair process

in muscle, possibly as a Ca2+ sensor that triggers vesicle fusion.

The importance of membrane repair is highlighted by the

genetic disease, dysferlinopathy, in which the primary defect is

the loss of Ca2+-regulated membrane repair due to dysferlin

deficiency. Future research on dysferlin and its interacting

partners will enhance the understanding of this important

process and provide novel avenues to potential therapies.
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Introduction
The plasma membrane is a biological barrier between the

extracellular and intracellular environments and is essen-

tial to the maintenance of cell integrity. Damage to this

barrier leads to cell death; however, plasma membrane

disruptions occur physiologically, and even frequently, in

a variety of cells such as the milk-secreting epithelial cells

of the mammary gland [1] and the myocytes of both

skeletal [2] and cardiac muscle [3]. For more than half

a century, it has been known that animal cells can survive

after experimental perforation of their cell membranes

(holes of >1000 mm2). It is now widely accepted that an

active membrane repair mechanism is conserved in many

types of mammalian cells and that it serves to reseal

membrane lesions. Rapid Ca2+-triggered endomembrane
www.sciencedirect.com
exocytosis is a crucial step in the membrane resealing

process [4,5] that enables cells to survive routine mem-

brane disruptions.

Muscular dystrophies are a heterogeneous group of pro-

gressive muscle wasting disorders of genetic origin. A

large number of muscular dystrophy genes encode com-

ponents of the dystrophin–glycoprotein complex (DGC)

that are directly or indirectly involved in linking the

cytoskeleton to the surrounding basement membrane.

Disruption of this link renders the muscle membrane

abnormally susceptible to contraction-induced injury, and

the accumulation of muscle membrane damage ulti-

mately leads to muscle necrosis and weakness. This high-

lights the importance of maintaining plasma membrane

integrity for normal physiological function and long-term

survival of muscle cells. Several additional forms of mus-

cular dystrophy arise from defects unrelated to the DGC.

For example, although dysferlin is not a DGC component

[6��], mutations in dysferlin gene are responsible for

three clinically distinct muscular dystrophies: limb-girdle

muscular dystrophy type 2B (LGMD2B), which is first

characterized by proximal muscle weakness at onset [7];

Miyoshi myopathy (MM), a distal muscle disorder that

preferentially affects the gastrocnemius muscle [7,8]; and

a distal anterior compartment myopathy that is distinct

from MM and progresses rapidly through the anterior

tibial muscles [9].

Recent work has shown that loss of dysferlin compromises

Ca2+-dependent membrane repair in skeletal muscle

[6��,10�]. Wild-type muscle fibers, in the presence of

Ca2+, can efficiently exclude the membrane impermeable

dye FM 1-43 after laser wounding, but the dye continu-

ously fills the muscle fiber through the wounding site

when Ca2+ is omitted in the bath solution (Figure 1),

suggesting that the wild-type muscle fiber possesses an

efficient Ca2+-dependent membrane resealing mechan-

ism [6��]. Dysferlin-null muscle fibers fail to exclude the

dye entry even in the presence of Ca2+ (Figure 1),

strongly suggesting the Ca2+-dependent membrane repair

requires dysferlin [6��]. Loss of dysferlin-mediated mem-

brane repair results in progressive myonecrosis [6��,10�].
In this review, we discuss recent advances in our un-

derstanding of dysferlin-mediated membrane repair in

disease processes.

Ferlin-1-like proteins
Soon after the initial identification of dysferlin as the

product of a gene mutated in MM, a new family of mam-

malian proteins, named ‘‘ferlin-1 like proteins’’, was pre-

dicted on the basis of structural similarity and sequence
Current Opinion in Cell Biology 2007, 19:409–416
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Figure 1

Defective Ca2+-dependent membrane repair in dysferlin-deficient

skeletal muscle cells. The sarcolemma of skeletal muscle fibers isolated

from wild-type (WT) and dysferlin-deficient (Dysf-null) mice was

wounded by full-power irradiation with a mode-locked infrared laser, in

the presence of the membrane-impermeable dye FM 1-43.

Fluorescence images were then taken every 10 s. In wild-type muscle

fiber in the presence of Ca2+, dye influx ceased by 30–60 s after

laser-induced disruption of the sarcolemma (left panel), suggesting that

the site of damage had been resealed. In wild-type muscle in the

absence of Ca2+, dye influx through the site of disruption continued over

the entire time course of the experiment (middle panel), indicating a

failure in the resealing mechanism. Likewise, in the dysferlin-null

muscle fiber, dye filling occurred over the entire course of

experiment (right panel), indicating that resealing failed, even in the

presence of Ca2+.
homology (Figure 2). These include dysferlin or Fer1L1

[7,8]; otoferlin or Fer1L2 [11,12]; myoferlin or Fer1L3

[13,14]; Fer1L4; Fer1L5 and Fer1L6. Each protein

contains multiple C2 domains, anchors to the membrane

via a single carboxy-terminal transmembrane domain

(Figure 2a), and shows sequence homology to the Caenor-
habditis elegans ferlin-1 (FER-1) gene. FER-1 expression is

restricted to primary spermatocytes, where it is essential for

maturation of motile spermatozoa. In homozygous FER-1

mutants, spermatid membranous organelles (MO) fail to

fuse with the plasma membrane during spermatogenesis,

resulting in nonmotile spermatozoa and infertility [15]. A

single amino acid substitution in any of three FER-1 C2

domains is sufficient to disrupt MO fusion by altering the

Ca2+ sensitivity of this protein [16]. A phylogenetic tree

constructed from the alignment of individual mammalian

ferlinC2domainsequences showsthat, inall ferlins, a given

C2 domain is more similar to other C2 domains at similar

positions in the other proteins than to C2 domains in
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different positions of the same protein [16] (Figure 2b).

These data suggest that multiple C2 domains may be

required for protein activity.

Dysferlin is a 230 kDa protein that contains seven C2

domains. It is found in a variety of tissues including skeletal

and cardiac muscle, kidney, placenta, lung, and brain, and

it is most highly expressed in skeletal and cardiac muscle

[7]. Interestingly, a single missense mutation in any of five

dysferlin C2 domains (C2A, B, D, E and G) has been

reported to cause muscular dystrophy [17] (Figure 2a),

again suggesting nonredundancy among individual C2

domains. But mutations in these C2 domains may also

lead to dysferlin misfolding and thus degradation [17,18].

The dysferlin C2A domain binds phospholipids in a Ca2+-

dependent manner [19], consistent with its role in skeletal

muscle membrane repair [6��,10�]. This novel function is

also supported by ultrastructural observations of dysferlin-

deficient skeletal muscle: subsarcolemmal regions are char-

acterized by prominent aggregations of small vesicles of

unknown origin [6��,20,21]; the sarcolemma itself shows

many gaps and microvilli-like projections rather than being

continuous and smooth [6��,21]; and the basal lamina is

multilayered in some regions [21]. In addition, dysferlin

deficiency delays myoblast fusion/maturation in vitro [22],

suggesting that dysferlin may also participate in muscle

differentiation/regeneration.

Myoferlin shares the highest sequence homology to dys-

ferlin. It is present at the sarcolemma of skeletal muscle

but, unlike dysferlin, it is also enriched in the nucleus

[14]. Although both myoferlin and dysferlin are expressed

in skeletal muscle, they seem to participate in distinct

cellular events. In contrast to dysferlin, myoferlin func-

tions in myoblast fusion during muscle differentiation/

maturation and myoferlin-null mice show muscle atrophy

[23]. Also, a lack of compensatory overexpression of myo-

ferlin in muscles with dysferlinopathy [24] supports the

view that myoferlin and dysferlin have few overlapping

functions. So far, myoferlin has not been linked to any

human disease.

Otoferlin is predominately expressed in the cochlea,

vestibule, and brain, although a low level of expression

is seen in other tissues including lung, kidney, skeletal

muscle, and heart [12]. Mutations in otoferlin are respon-

sible for nonsyndromic deafness known as DFNB9 in

humans [11,12]. Otoferlin was recently shown to be

essential for a late step of synaptic vesicle exocytosis

and may act as the major Ca2+ sensor triggering synaptic

vesicle–plasma membrane fusion at the inner hair cell

ribbon synapse [25��].

The Fer1L4, Fer1L5, and Fer1L6 proteins are predicted

from the human and mouse genomic sequences but have

not yet been characterized. In light of the association of

dysferlin and otoferlin with human diseases, it is reasonable
www.sciencedirect.com
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Figure 2

Structural characteristics of the ferlin-1-like proteins. FER-1 and mammalian ferlin-1-like proteins are aligned, with their domain composition indicated

(a). Most ferlins have five to seven C2 domains and a single carboxyl transmembrane domain. FER-1, dysferlin (Dysf), myoferlin (Myof), and

Fer1L5 have FerA and FerB domains, and nested DysfN and DysfC domains, which are not present in otoferlin (Otof) and other ferlins. The black

dots on dysferlin domains indicate the missense mutations that lead to muscular dystrophy. A phylogenetic tree (b) was constructed on the

basis of the alignment of individual ferlin C2 domain sequences. The tree shows that the C2 domains at any similar positions of distinct proteins are

more similar to each other than to those within the same protein.
to presume that these additional ferlin-1-like proteins may

also be involved in human pathologies.

Mechanism of dysferlin-mediated
membrane repair
Recent progress toward elucidating the mechanisms

involved in Ca2+-dependent membrane repair has led to

the proposal of two mechanisms: the lipid flow promotion
hypothesis and the patch hypothesis.

According to the lipid flow promotion hypothesis, hydro-

phobic lipids at the free edge of the membrane disruption

site are energetically unfavorable in the aqueous environ-

ment, creating ‘line tension’. The line tension may

promote automatic lipid flow over this site to fuse to

the complementary free membrane end, closing the

disruption. The fact that the plasma membrane adheres

to an underlying cortical cytoskeleton, which generates

‘membrane tension’ [26] opposing the ‘line tension’
www.sciencedirect.com
(reviewed in [27]), argues against this. However, if the

membrane disruption was capable of somehow reducing

the ‘membrane tension’, membrane resealing through

‘line tension’-driven lipid flow would be a viable mech-

anism. Notably membrane disruption has been observed

to cause a rapid Ca2+-dependent reduction in ‘membrane

tension’ [25��]. Consistent with the lipid flow hypothesis,

treatment of damaged cells with surface active agents

thought to reduce the ‘membrane tension’ also enhances

resealing and cell survival [28,29]. With regard to the

observed reduction in membrane tension in response to

membrane disruption, this may result from depolymer-

ization of the cortical cytoskeleton by Ca2+-activated

calpain proteolytic activity (Figure 3), as supported by

the finding that the typical m-calpain and m-calpain (also

called calpain-1 and calpain-2, respectively) are required

for efficient membrane repair [30,31�,32]. However, this

membrane repair mechanism might only be applicable to

relatively small disruptions (<1 mm diameter) [33].
Current Opinion in Cell Biology 2007, 19:409–416
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Figure 3

Schematic model of dysferlin-mediated membrane repair. In normal muscle fiber, dysferlin is localized to the sarcolemma and cytoplasmic vesicles

and interacts with annexins A1 and A2 (a). Membrane disruption causes calcium flooding into the muscle fiber and creates a zone of high

calcium around the disruption site (b). The high calcium activates proteases such as calpain, which leads to the cleavage of cortical cytoskeleton

proteins and thereby reduces membrane tension (c). The high calcium also triggers the aggregation of dysferlin-carrying repair vesicles

probably involving annexins and the migration of these vesicles toward the disruption site, where they fuse with one another and with the plasma

membrane in the presence of localized high levels of calcium (b–d). Dysferlin then triggers vesicle fusion with the plasma membrane, probably

through SNAREs. Fusion of the repair vesicles with the plasma membrane results in a membrane patch being inserted across the site of membrane

disruption and thereby reseals the disrupted plasma membrane (e).
In the patch hypothesis for membrane repair, Ca2+ flood-

ing through a membrane disruption is thought to evoke

local vesicle–vesicle and vesicle–plasma membrane

fusion events. As a result, a population of large vesicles

accumulates underneath the disruption site, eventually

creating a ‘patch’ of new membrane across the membrane

gap via vesicle–vesicle and vesicle–membrane fusion

(Figure 3). In support of this possibility, abnormally large

vesicles rapidly accumulate, in a Ca2+-dependent manner,

at sites of membrane damage in several systems: endo-

thelial cells [5], sea urchin eggs [34] and nerve axons [35].

These findings indicate that Ca2+-triggered vesicle

migration and vesicle–vesicle fusion events take place
Current Opinion in Cell Biology 2007, 19:409–416
immediately following disruption of the plasma mem-

brane.

With regard to the kinds of vesicles that might be involved

in membrane repair by the patch process, accumulated

evidence suggests that yolk granules [34], lysosomes [36],

enlargeosome [37], or vesicles generated by endocytosis of

axolemma [35] are utilized depending on their abundance

in different cells. Lysosomes are widely present and

competent for Ca2+-dependent regulated exocytosis and

thus considered an ideal candidate for membrane repair.

Indeed, inhibition of lysosome exocytosis has been repo-

rted to inhibit membrane resealing in NRK, CHO, L6E9,
www.sciencedirect.com
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3T3, and primary skin fibroblast cells [36], suggesting that

Ca2+-regulated exocytosis of lysosomes is probably invo-

lved in membrane repair. However, whether lysosomes are

dispensable for membrane repair is a matter of debate. One

group reported that a small molecule vacuolin-1 blocked

the Ca2+-dependent exocytosis of lysosomes induced by

ionomycin or plasma membrane wounding, without affect-

ing the process of resealing [38], whereas the inhibitory

effect of vacoulin-1 on Ca2+-regulated exocytosis of lyso-

somes was not confirmed by the other group [39]. The

reason for this discrepancy is not yet clear. The specific

organelles providing membrane for resealing in skeletal

muscle remain to be determined. Skeletal muscle under-

goes frequent damage, thus requiring frequent membrane

resealing. If lysosomes were the predominant donor

membranes for resealing, lysosomal enzymes would be

expected to accumulate in the extracellular space, and this

would probably have deleterious effects on the muscle. It is

conceivable that skeletal muscle may use whatever Ca2+-

regulated exocytic vesicles available for resealing.

Membrane fusion requires several membrane proteins that

could potentially be required for membrane resealing.

These include SNARE proteins, a family of transmem-

brane proteins essential for most intracellular membrane

fusion processes, and synaptotagmins (Syt), transmem-

brane proteins with two highly conserved C2 domains that

serve as calcium sensors in the regulation of vesicle ex-

ocytosis in neurons and other cell types [39]. Several lines

of evidence support that SNAREs are involved in mem-

brane repair. Membrane resealing in both sea urchin eggs

and fibroblasts is inhibited by injections of botulinum and

tetanus toxins [40], which cleave various SNARE proteins

and are known to inhibit Ca2+-mediated synaptic vesicle

exocytosis. Also, antibodies to syntaxin-1 and Syt-1 inhibit

resealing in crayfish giant axons [41], and antibody-based or

peptide-based inhibition of Syt-VII blocked Ca2+-depend-

ent exocytosis of lysosomes in permeablized fibroblasts

[42]. Moreover, Syt-VII has been implicated in the plasma

membrane repair of skeletal muscle, since Syt-VII-

deficient mice developed inflammatory myopathy with

extensive fibrosis, high serum creatine kinase levels, and

progressive muscle weakness [43]. Furthermore, otoferlin

has recently been shown to bind SNAP25, and syntaxin-1

to trigger synaptic vesicle exocytosis in inner hair cells,

which do not express Syt-I [25��]. Since dysferlin shares

high homology to otoferlin, it is reasonable to hypothesize

that dysferlin might also work through SNAREs to regulate

vesicle fusion in membrane repair.

Recent work provides insights into the mechanism of

synaptotagmin-potentiated membrane fusion. In response

to Ca2+, the C2A and C2B domains of synaptotagmin-1

insert into the target membranes [44,45], induce high

positive curvature of the membranes, and thus lower the

activation energy barrier for membrane fusion [46��]. As

mentioned earlier, dysferlin and other ferlin proteins also
www.sciencedirect.com
contain C2 domains and at least some of these C2 domains

bind phospholipids in response to Ca2+. It is very intriguing

to examine whether dysferlin triggers membrane fusion by

the same mechanism.

Dysferlin interactors that may be involved
in membrane repair
Recent studies of dysferlin interacting proteins have

provided new mechanistic insights into dysferlin function.

Dysferlin normally associates with annexins A1 and A2 in a

Ca2+-dependent and membrane injury dependent manner

[10�]. In dysferlinopathy patients, expression of annexins

A1 and A2 is elevated compared to controls, and annexin

expression levels are significantly correlated with clinical

severity scores [47]. These data suggest that annexins A1

and A2 play a role in dysferlin-mediated membrane reseal-

ing in skeletal muscle. Indeed, a requirement for annexin

A1 in membrane repair was recently confirmed in HeLa

cells [48�]. Although the mechanism of annexin action in

membrane repair is currently unclear, the findings that

annexins firstly, bind phospholipids in a Ca2+-dependent

manner, secondly, initiate vesicle aggregation in vitro, and

thirdly, interact with the actin cytoskeleton [49] suggest an

involvement in vesicle–vesicle fusion for ‘patch’ formation

and vesicle movement (Figure 3). It would be interesting to

examine model systems in which endogenous annexins A1

and A2 are deleted. One might expect that the loss of these

proteins would lead to defective membrane repair in

skeletal muscle and to muscular dystrophy, or that it would

exacerbate the phenotype of dysferlin deficiency.

Caveolin-3 and calpain-3 are both muscle-specific

proteins that are responsible for distinct forms of muscular

dystrophy (LGMD1C and LGMD2A, respectively) and

both have also been found to interact with dysferlin

[50,51]. Whether these interactions are important in

the membrane repair pathway remains unclear. However,

patients deficient in caveolin-3 have been reported to

exhibit a reduction or mislocalization of dysferlin in

caveolinopathy patients [50,52], and patients deficient

in dysferlin have reduced levels of calpain-3 [51]. Thus,

these diseases may well involve overlapping or associated

pathogenic mechanisms.

Dysferlin also binds to AHNAK [53], a previously

reported marker of enlargeosomes [37]. Again, it is not

known whether the association of AHNAK and dysferlin

is relevant for membrane repair. In fact, both proteins

redistribute to the cytosol during skeletal muscle regen-

eration [53], suggesting that they may act together

in membrane fusion events that are necessary during

regeneration rather than in events crucial to membrane

repair.

Affixin, an integrin-linked kinase focal adhesion protein,

has also been reported to localize to the sarcolemma and to

coimmunoprecipitate with dysferlin [54]. Affixin immu-
Current Opinion in Cell Biology 2007, 19:409–416
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noreactivity is reduced at the sarcolemma of MM and

LGMD2B muscles, and also in other muscle diseases

including LGMD1C. In all these cases, affixin and dys-

ferlin show quite similar changes in their expression pat-

terns, including a reduction in sarcolemmal staining (with

or without cytoplasmic accumulations, depending on the

specific disease forms) [54]. Given what is known about

affixin, such an interaction could potentially coordinate

cytoskeletal reorganization required for efficient vesicle

trafficking during the resealing process. However, such a

role has not been established, nor has the functional

significance of this interaction been addressed.

Defective membrane repair and disease
As described above, defective dysferlin-mediated mem-

brane repair is responsible for three clinically distinct

forms of muscular dystrophy in humans. The cause of

the observed disease heterogeneity remains unclear. Inter-

estingly, the same mutations in dysferlin gene have been

found to cause different disease manifestation even within

the same family [55,56], suggesting that other genetic

factors may affect the clinical symptoms in the patients.

But these distinct symptoms share overlapping features:

age of onset, slow disease progression, and early, marked

elevation of serum CK.

Recent work has shown that dysferlin deficiency greatly

reduces the membrane repair efficiency of cardiac muscle,

with the aged dysferlin-null mice manifesting hallmarks of

cardiomyopathy, for example, elevated serum cardiac tro-

ponin T levels, cardiac necrosis, and cardiac fibrosis [57��].
Although echocardiography recordings from �1-year-old

dysferlin-null mice failed to detect abnormalities in cardiac

physiology, mechanical stress disturbed ventricular func-

tion sufficiently to unmask the cardiac phenotype of these

mice [57��]. The importance of maintaining an efficient

dysferlin-mediated membrane repair system for cardiac

muscle is further supported by the fact that dysferlin

deficiency greatly accelerates the progression of cardio-

myopathy in mdx mice (which carry a point mutation in the

dystrophin gene), where skeletal and cardiac muscle are

highly susceptible to membrane damage [57��]. Although

cardiomyopathy is not commonly reported in human dys-

ferlinopathy patients, a 57-year-old woman with dysferlin

deficiency presented with cardiomyopathy after more than

20 years of progressive muscle wasting [58], suggesting that

dysferlinopathy patients are indeed prone to develop car-

diomyopathy but with a late onset. A systematic examin-

ation of cardiac involvement in dysferlinopathy patients

has been initiated, and an early report has shown that a

significant proportion (9 out of 11) of these patients (ages

19–48) have elevated serum cardiac troponin T levels (S

Yilmazer et al., abstract in Neuromuscul Disord 2006,

16:S110). Similarly, dysferlin-null mice show an increase

in serum cardiac troponin T levels at early ages (e.g. 30

weeks old), although they do not present clear cardiac

muscle abnormality, by either histological or echocardio-
Current Opinion in Cell Biology 2007, 19:409–416
graphy analyses. Further examination of cardiomyopathy

in older dysferlin-deficient patients is therefore necessary.

Conclusions
Membrane resealing is an emergency response that is

highly conserved among different species and cell types.

It is mediated by rapid Ca2+-triggered exocytosis of

intracellular vesicles in animal cells, which form a patch

at the disruption site (Figure 3). Skeletal and cardiac

muscles are mechanically active tissues that are often

subjected to injury; thus, they require a robust membrane

resealing mechanism and may therefore have developed a

specialized mechanism for this purpose. Dysferlin plays a

crucial role in the membrane repair of both skeletal and

cardiac myocytes. The dysferlin-mediated resealing

response in muscle is likely to involve the SNARE family

of proteins and may also require the participation of other

Ca2+-activated proteins such as calpains and annexins

(Figure 3). At this time, it is not clear specifically which

SNARE proteins might be involved. Although both Syt-

VII-regulated membrane repair and dysferlin-mediated

membrane repair seem to be active in skeletal muscle, it

remains unclear whether they regulate fusion of the same

vesicle pools in the same step or different steps or

different vesicle pools. Future experiments addressing

these questions will significantly advance our understand-

ing of the detailed mechanism of muscle membrane

repair.
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