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Letter to the Editor

We are writing in response to the Letter to the Editor by 
Lamb et al. in this issue, which challenges the central 
conclusion of our recent study published in The Journal 
of General Physiology, namely that “functional ClC-1 
channels in adult mouse skeletal muscle reside exclu-
sively within the sarcolemma” (Lueck et al., 2010).

The primary source of concern expressed by Lamb  
et al. relates to the acquisition and interpretation of our 
confocal images. The first issue raised is that endoge-
nous ClC-1 channel immunoreactivity may have been 
missed in the X–Y confocal images because of the small 
T-tubule diameter, limited pixel size, and insufficient 
photomultiplier tube gain. However, Lamb et al. fail to 
acknowledge that our confocal imaging was able to 
clearly resolve T-tubule di-8-ANNEPS (Fig. 1 A) and ex-
pressed GFP- bungarotoxin–labeled Ramp (Fig. S1 A, 
BTX-Ramp) fluorescence, conditions expected to 
produce comparable labeling of both the sarcolemmal 
and T-tubule membranes. Although the T-tubule signals 
for these probes were indeed lower than that of the sar-
colemma, as expected, a prominent T-tubule signal was 
clearly resolved with both fluorophores. Importantly, 
similar results were observed for Cav-3, which localizes 
to both the sarcolemmal and T-tubule membranes 
(Ralston and Ploug, 1999; Murphy et al., 2009). Thus, 
we would have easily observed a T-tubule ClC-1 fluores-
cence if the native ClC-1 T-tubule density was significant 
or at least comparable to that within the sarcolemma.

Additional concerns were raised regarding the ability 
of formamide to detubulate skeletal muscle based on an 
apparent reduction in sarcolemmal di-8-ANEPPS fluo-
rescence after detubulation in the representative image 
shown in Fig. 1 B of Lueck et al. (2010). Because the 
two images shown in this figure come from different fi-
bers stained with di-8-ANNEPS at different times, infer-
ences based on a direct comparison of the sarcolemmal 
signals between the two images cannot be made. How-
ever, differences between the ratio of the T-tubule and 
sarcolemmal signals in each image do provide an index 
of the effect of detubulation on dye staining of the two 
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membrane compartments. For the images shown in Fig. 1 
(A and B), the ratio of T-tubule to sarcolemmal signal 
was 0.27 (23.4/86.4) in control and 0 (0.08/71.1) after 
detubulation. In addition, membrane potentiometric 
dyes have been used by others and demonstrated to be 
a valid means of assessing T-tubule uncoupling and dis-
organization (He et al., 2001; Brette et al., 2002). Most 
importantly, the reduction in T-tubule di-8-ANEPPS 
staining as an indicator of successful detubulation in 
our study was directly substantiated by confirmation of 
reduced membrane capacitance in whole cell patch 
clamp experiments after formamide-induced osmotic 
shock (Figs. 4 B and 6 D).

Lamb et al. also expressed concerns regarding our 
localization of exogenously expressed GFP-ClC-1 chan-
nels in mouse skeletal muscle (Fig. 10). We agree that 
unlike native ClC-1 localization discussed above, signifi-
cant internal GFP-ClC-1 fluorescence is observed after 
adenoviral-mediated GFP-ClC-1 expression in our experi-
ments. Indeed, images of some Ad-GFP-ClC-1–infected 
fibers showed significant intracellular fluorescence or-
ganized in circular rings, consistent with an association 
with T-tubules (Fig. 10 A), whereas other fibers showed 
a more global increase in fluorescence that is not consis-
tent with T-tubule localization (Fig. 10 D). A clear limita-
tion of such adenoviral-mediated expression experiments 
is that the protein may be overexpressed, resulting in 
protein aggregation along the synthesis, trafficking, and 
degradation pathways. The possibility that intracellular 
fluorescence in Ad-GFP-ClC-1–infected fibers is not prop-
erly inserted in the T-tubule membrane is highlighted 
by the fact that only sarcolemma-associated ClC-1 chan-
nels containing an extracellular -BTX–binding site were 
labeled with Alexa 594–conjugated -BTX, whereas clear 
T-tubule labeling was observed after expression of a con-
trol -BTX–labeled membrane protein (-BTX-RAMP1) 
(Fig. S1 F). Nevertheless, we cannot conclude with any 
certainty that T-tubule ClC-1 expression does not occur 
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agree with the assertion of Lamb et al. that these studies 
provide “quite definitive evidence” for a large T-tubule 
chloride conductance in rat skeletal muscle. In addition 
to possible species differences, acknowledged above, 
the skinned fiber experiments provide only indirect 
measures of total chloride conductance based on mea-
surements of tension development under various ionic 
conditions. In addition, these measurements are con-
ducted only after mechanical disruption of the sarco-
lemma, which could result in either ClC-1–containing 
portions of the sarcolemma being used to seal over the 
T-tubule opening or altered trafficking and redistri-
bution of ClC-1 channels from the artificially dis-
rupted sarcolemma to the intact T-tubule system. Finally, 
Papponen et al. (2005) found that maintenance of ClC-1 
within the sarcolemma is a highly regulated process 
that depends on the physiological environment of the 
cell. This study showed that ClC-1 channels in rat muscle 
fibers redistribute intracellularly after isolation. Thus, it 
is possible that some ClC-1 channels may redistribute 
from the sarcolemma to the T-tubule membrane during 
rat fiber isolation and subsequent mechanical skinning. 
A major strength of the experiments conducted in our 
study is that ClC-1 channel function was directly assayed 
both before and after selective disruption of the T-tubular 
membrane within the same muscle fibers. In addition, 
our experiments extended these electrophysiological 
studies to fibers from both young and adult mice and 
confirmed the findings using additional direct measures 
of sarcolemmal ClC-1 protein localization (immunocyto
chemistry and GFP/-BTX labeling).

We would like to point out two errors in our paper 
that have recently come to light. First, during final for-
matting of the manuscript, we mistakenly inserted Adrian 
and Bryant (1974) instead of Bryant (1970) in reference 
to the findings that membrane resistance is not increased 
in normal goat skeletal muscle fibers after detubulation, 
and that myotonia persists in fibers from myotonic goats 
after detubulation. Additionally, we made an uninten-
tional display error when preparing the final version of 
Fig. 10 C. Although, as pointed out by Lamb et al., the 
gain of the green channel in this panel is slightly de-
creased from the original intensity shown in Fig. 10 A, the 
conclusions drawn from this figure remain unchanged.

In conclusion, our study was the first to combine com-
prehensive electrophysiological and multiple confocal 
imaging approaches to determine the subcellular distri-
bution of ClC-1 channels in skeletal muscle fibers from 
both young and adult mice. The results of these studies 
are clear and entirely consistent with the conclusion that 
functional ClC-1 channels in adult mouse skeletal mus-
cle reside exclusively within the sarcolemma. Although 
Lamb et al. raise valid questions, our answers to these 
questions add additional strength to this conclusion.

Edward N. Pugh Jr. served as editor.

in some fibers under conditions after infection with 
Ad-GFP-ClC-1. Indeed, as pointed out by Lamb et al., 
DiFranco et al. (2009) demonstrated that expression of 
EYFP-ClC-1 in mouse FDB muscle fibers by cDNA elec-
troporation can result in double rows of transverse 
EYFP-ClC-1 fluorescence, increased ClC-1 conductance, 
and markedly reduced excitability, as a result of success-
fully driving functional EYFP-ClC-1 channel expression 
to the surface membrane.

Lamb et al. raised the concern that a T-tubule ClC-1 
conductance may have been missed in our experiments 
because our intracellular recording solutions lacked 
ATP and adequate control for the oxidative status of the 
cell. Although we agree that ClC-1 activity in skeletal 
muscle may be influenced by ATP and redox status, it is 
unlikely that our recording conditions would have se-
lectively and completely silenced ClC-1 channels in the 
T-tubule system, but not in the sarcolemma. Lamb et al. 
also suggest that the use of an external solution with a 
higher osmolarity in the adult fiber experiments may 
explain why ClC-1 channel activity within the T-tubule 
system was not observed in our experiments. To our 
knowledge, the effects of osmolarity on ClC-1 activity 
have not been determined in mammalian skeletal mus-
cle. Although we cannot rule out potential modulatory 
effects of the recording conditions used in our study on 
ClC-1 activity, again it is unlikely that these conditions 
would result in selective and complete elimination of  
T-tubule ClC-1 function.

An important aspect of our study is that sarcolemmal-
restricted ClC-1 localization was confirmed for fibers 
isolated from both young and old mice and using multi-
ple complementary approaches. The importance of 
proper ClC-1 activity becomes evident by 14 days of age 
in mice, where the loss of ClC-1 function results in se-
vere myotonia (Heller et al., 1982). Lamb et al. also sug-
gest, and we agree, that differences among species may 
account for some of the disparate conclusions in the lit-
erature regarding ClC-1 subcellular localization. They 
correctly point out that our experiments were con-
ducted entirely in mouse muscle fibers, whereas previ-
ous studies of ClC-1 localization in muscle have used 
several other species, including frog (Hodgkin and 
Horowicz, 1960; Eisenberg and Gage, 1969), goat (Bryant, 
1970), toad (Coonan and Lamb, 1998), and rat (Palade 
and Barchi, 1977; Dulhunty, 1979; Coonan and Lamb, 
1998; Papponen et al., 2005; Dutka et al., 2008). Future 
work using multiple complementary approaches is needed 
to carefully compare relative ClC-1 subcellular distribu-
tion across different species.

The results of our work are in opposition to a series  
of elegant studies using mechanically skinned muscle  
fibers (mostly rat), which provides evidence of a large 
T-tubule chloride conductance (Coonan and Lamb, 
1998; Pedersen et al., 2004; Dutka et al., 2008).  
Although conducted with great technical skill, we dis-
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