
Residual laminin-binding activity and enhanced
dystroglycan glycosylation by LARGE in novel
model mice to dystroglycanopathy

Motoi Kanagawa1,{, Akemi Nishimoto1,{, Tomohiro Chiyonobu1, Satoshi Takeda3,

Yuko Miyagoe-Suzuki4, Fan Wang1, Nobuhiro Fujikake1, Mariko Taniguchi1, Zhongpeng Lu1,

Masaji Tachikawa1, Yoshitaka Nagai1, Fumi Tashiro2, Jun-Ichi Miyazaki2, Youichi Tajima5,

Shin’ichi Takeda4, Tamao Endo6, Kazuhiro Kobayashi1, Kevin P. Campbell7,8,9,10,11

and Tatsushi Toda1,�

1Division of Clinical Genetics, Department of Medical Genetics and 2Division of Stem Cell Regulation Research,

Department of Molecular Therapeutics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871,

Japan, 3Otsuka GEN Research Institute, Otsuka Pharmaceutical Co. Ltd, Tokushima 771-0192, Japan, 4Department

of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-

higashi, Kodaira, Tokyo 187-8502, Japan, 5Department of Clinical Genetics, The Tokyo Metropolitan Institute of

Medical Science, Tokyo Metropolitan Organization for Medical Research, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo

113-8613, Japan, 6Glycobiology Research Group, Tokyo Metropolitan Institute of Gerontology, Foundation for

Research on Aging and Promotion of Human Welfare, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan, 7Howard

Hughes Medical Institute, 8Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center,
9Department of Molecular Physiology and Biophysics, 10Department of Neurology and 11Department of Internal

Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA

Received July 21, 2008; Revised November 2, 2008; Accepted November 12, 2008

Hypoglycosylation and reduced laminin-binding activity of a-dystroglycan are common characteristics of
dystroglycanopathy, which is a group of congenital and limb-girdle muscular dystrophies. Fukuyama-type
congenital muscular dystrophy (FCMD), caused by a mutation in the fukutin gene, is a severe form of dystro-
glycanopathy. A retrotransposal insertion in fukutin is seen in almost all cases of FCMD. To better under-
stand the molecular pathogenesis of dystroglycanopathies and to explore therapeutic strategies, we
generated knock-in mice carrying the retrotransposal insertion in the mouse fukutin ortholog. Knock-in
mice exhibited hypoglycosylated a-dystroglycan; however, no signs of muscular dystrophy were observed.
More sensitive methods detected minor levels of intact a-dystroglycan, and solid-phase assays determined
laminin binding levels to be �50% of normal. In contrast, intact a-dystroglycan is undetectable in the dys-
trophic Largemyd mouse, and laminin-binding activity is markedly reduced. These data indicate that a small
amount of intact a-dystroglycan is sufficient to maintain muscle cell integrity in knock-in mice, suggesting
that the treatment of dystroglycanopathies might not require the full recovery of glycosylation. To examine
whether glycosylation defects can be restored in vivo, we performed mouse gene transfer experiments.
Transfer of fukutin into knock-in mice restored glycosylation of a-dystroglycan. In addition, transfer of
LARGE produced laminin-binding forms of a-dystroglycan in both knock-in mice and the POMGnT1
mutant mouse, which is another model of dystroglycanopathy. Overall, these data suggest that even
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partial restoration of a-dystroglycan glycosylation and laminin-binding activity by replacing or augmenting
glycosylation-related genes might effectively deter dystroglycanopathy progression and thus provide thera-
peutic benefits.

INTRODUCTION

Dystroglycanopathy is a group of congenital and limb-girdle
muscular dystrophies that includes Walker–Warburg syn-
drome (WWS), muscle-eye-brain (MEB) disease, Fukuyama-
type congenital muscular dystrophy (FCMD), congenital
muscular dystrophy 1C/D (1,2) and limb-girdle muscular
dystrophy (LGMD) 2I/K/M/N (3–6). Hypoglycosylation of
a-dystroglycan is a hallmark of these disorders. So far, six
genes (POMT1, POMT2, POMGnT1, fukutin, FKRP and
LARGE) have been implicated in dystroglycanopathies and
all are thought to be involved in glycosylation of
a-dystroglycan. POMGnT1 and the POMT1/2 complexes are
known to have glycosyltransferase activities that place
O-mannosyl sugar chains on a-dystroglycan (7,8). The exact
functions of fukutin, FKRP and LARGE are still unknown.
a-Dystroglycan (a-DG) is a receptor for laminin in the

basement membrane and is anchored on the plasma membrane
through non-covalent interaction with a transmembrane-type
b-DG (9). a- and b-DGs are encoded by a single mRNA
that is cleaved into two subunits during post-translational
maturation. O-glycosylation of a-DG is required for ligand-
binding activity. Although the exact binding epitope for
ligand is still unknown, one unique O-mannosyl glycan
[Neu5Ac(a2–3)Gal(b1–4)GlcNAc(b1–2)Man-Ser/Thr] (10)
appears to be involved in ligand binding among extensive
and heterogenous groups of O-linked sugar chains. b-DG
interacts with dystrophin, which in turn binds to actin fila-
ments. The DG complex spans the plasma membrane, con-
necting the basement membrane to the actin cytoskeleton
and presumably conferring mechanical stability to muscle
cells during muscle contraction.

In Japan, FCMD is the most common congenital muscular
dystrophy and, following Duchenne muscular dystrophy, is the
second most common childhood muscular dystrophy. An auto-
somal recessive disorder, FCMD is characterized by severe
muscular dystrophy, abnormal neuronal migration associated
with mental retardation and epilepsy and, frequently, eye
abnormalities (11). A recent study revealed aberrant neuromus-
cular junction formation and delayed muscle terminal matu-
ration in FCMD, suggesting that a maturational delay of
muscle fibers underlies the etiology of FCMD (12). Through
positional cloning we identified fukutin, the gene responsible
for FCMD (13). The predominant mutation in FCMD was ident-
ified as a 3 kb SINE-VNTR-Alu (SVA) retrotransposon insertion
into the 30-UTR of fukutin. In Japan, 70–80% of FCMD patients
are homozygous for this retrotransposal insertion. Compound
heterozygosity, exhibiting both a retrotransposonal mutation
and a point mutation, is sometimes seen and generally exhibits
more severe pathologies (13–15). Only a few cases with non-
founder mutations (homozygous for point mutations) have
been reported outside of Japan (5,16–19).

MEB disease is a severe autosomal recessive disease, similar
to FCMD, characterized by congenital muscular dystrophy,

ocular abnormalities and brain malformation. The gene respon-
sible for MEB is POMGnT1, which encodes protein O-linked
mannose b1,2-N-acetylglucosaminyltransferase 1 (7). In both
FCMD and MEB disease, a-DG glycosylation and laminin-
binding activity are severely disrupted (20). The Largemyd

mouse, a spontaneous mutant, has been used as a model for
dystroglycanopathy. As is the case with human dystroglycano-
pathies, a-DG in Largemyd mice is hypoglycosylated and
shows reduced ligand-binding activity (20,21). Positional
cloning in this model identified a disease-causing mutation in
the Large gene (22), which encodes a protein with a transmem-
brane domain followed by a coiled-coil domain and two DxD-
containing putative catalytic domains (23). LARGE mutations
are also seen in human dystroglycanopathy (24). Although the
exact function of the LARGE protein is not fully understood,
it has been shown to produce hyperglycosylated a-DG in
culture cells and mice (25,26). In addition, physical interaction
between LARGE and a-DG is an essential step in acquiring
ligand-binding activities of a-DG (25). Therefore, it is believed
that LARGE plays a post-translational role in modulating both
a-DG glycosylation and its functional expression.

To further investigate molecular pathogenesis and to
explore therapeutic strategies for dystroglycanopathy, we gen-
erated several model mice for FCMD. We first generated mice
with a targeted fukutin disruption, but this model showed
embryonic lethality (27). We also generated chimeric fukutin
mice by injecting homozygous targeted (fukutin2/2) ES
cells into blastocysts (28). Mice with high chimerism
showed dystrophic skeletal muscle; however, the variability
of chimerism among individuals, and with growth, limits
this experimental approach. Therefore, we generated a trans-
genic knock-in mouse model carrying the retrotransposal
insertion in fukutin. Our data revealed that even a small
amount of intact a-DG is sufficient to maintain skeletal
muscle function, and suggest that increasing the expression
of glycosylation-related genes, which could be accomplished
through various approaches, can be a therapeutic strategy for
preventing or slowing progression of a broad range of dystro-
glycanopathies.

RESULTS

Generation of model mice for FCMD

To generate a transgenic knock-in mouse carrying the retro-
transposal insertion, we replaced mouse fukutin exon 10
with a FCMD patient’s exon 10, engineered to contain the ret-
rotransposal insertion using a site-directed DNA integration
technique. Exon 10 encodes amino acids from Tyr-392 to
the C-terminal end and the 30-UTR. We also generated
another transgene containing a normal human exon 10. The
terms Hn (human normal; Fig. 1A, no. 6) and Hp (human
patient; Fig. 1A, no. 7) refer to transgenes containing the
normal human exon 10 and the patient’s exon 10, respectively.

622 Human Molecular Genetics, 2009, Vol. 18, No. 4



Recombination was confirmed using Southern blot analysis of
genomic DNA from ES cells (data not shown). Targeted ES
cell clones were injected into blastocysts to obtain chimeric
mice. Germline transmission of the knock-in allele was estab-
lished via Southern blot analysis of mouse genomic DNA
(Fig. 1B). Germline-competent heterozygous mice were in
turn mated to generate homozygous mutants (Hn/Hn and
Hp/Hp) (Fig. 2A, nos 3 and 4). RT–PCR showed a dramatic
reduction of fukutin mRNA transcript levels in Hp/Hp mice
(Fig. 1C). Through quantitative PCR, we determined that
Hp/Hp mice express fukutin transcript at 5–10% of normal
levels (data not shown). We consider Hp/Hp mice to be
models for most FCMD cases that are homozygous for the ret-
rotransposal insertion. Human patients who are compound het-
erozygous for the insertion and a nonsense fukutin mutation
generally show more severe pathology than those who are
homozygous for the insertion (14). Therefore, we crossed

Hp/Hp mice with transgenic mice carrying a neo cassette dis-
ruption of one fukutin allele (fukutinþ/2) (27) to create a com-
pound heterozygous line. The Hp/þ mice in this line represent
retrotransposon carriers (Fig. 2A, no. 5) and the Hp/2 mice
represent compound heterozygotes (Fig. 2A, no. 6).

FCMD model mice exhibit hypoglycosylation of a-DG

To characterize the biochemical properties of a-DG in the
knock-in mice, we prepared skeletal muscle samples enriched
for a-DG with wheat germ agglutinin (WGA) beads, which is
able to bind nearly all the DG in the muscle sample (20,29).
These preparations were analyzed using western blot analysis
with goat polyclonal antibodies against a-DG core protein
(AP-074G-C) and the monoclonal antibody IIH6. IIH6
recognizes glycosylated epitopes on a-DG, and hypoglycosy-
lation results in the absence of epitopes for the antibody (20).

Figure 1. Generation of FCMD model mice that carry the retrotransposal insertion in the mouse fukutin gene. (A) Schematic representation of the targeting
vector. Details are described in the Materials and Methods section. Human fukutin exon10 is shown in green, and the retrotransposon is shown in red. (B)
Southern blot analysis of mouse genomic DNA. Insertion of the human exon10 with the retrotransposon yields new 3.1 kb BamHI/Bgl II and 5.6 kb fragments
that hybridize, respectively, with the 50 and 30 probes shown in (A). (C) RT–PCR analysis. fukutin transcripts were amplified using RT-PCR. A b-actin internal
control is shown (bottom panel).
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Western blot analysis of a-DG core protein revealed the pre-
sence of �150 kDa a-DG proteins in the control group (þ/þ,
þ/2, Hn/Hn and Hp/þ mice) (Fig. 2B, lanes 1–3 and 5). A
slight reduction in molecular weight was observed in Hp/Hp

mice (Fig. 2B, lane 4, upper band). In Hp/2 mice, we observed
a much-reduced intensity of the �150 kDa bands (Fig. 2B, lane
6). In addition, lower molecular weight (�90 kDa) bands were
detected in Hp/Hp and Hp/2 mice (Fig. 2B, lanes 4 and 6).
Western blotting with IIH6 detected �150 kDa bands in the
control groups (þ/þ, þ/2, Hn/Hn and Hp/þ) (Fig. 2C, lanes
1–3 and 5). IIH6 reactivity at �150 kDa in Hp/Hp and Hp/2
mice was reduced relative to controls (Fig. 2C, lanes 4 and 6).
a-DG proteins with reduced molecular weight (�90 kDa)
were not recognized by IIH6, indicating that they are hypoglyco-
sylated. Western blot analysis of b-DG confirmed comparable
levels of DG proteins among the samples (Fig. 2D). Hp/2
mice consistently contained more hypoglycosylated a-DG
than Hp/Hp mice; therefore, we used Hp/2 mice as models
for FCMD and their Hp/þ littermates as controls. Longer
exposure of blots from Hp/2 mice detected an a-DG species
recognized by IIH6 with the molecular weight of �150 kDa
(Fig. 2E), suggesting that a small amount of intact a-DG also
is present. Analysis of laminin-binding activity in Hp/2 mice
and Hp/þ littermates using a laminin overlay assay (Fig. 2F)
showed reduced laminin-binding activity in Hp/2 mice.

A small amount of intact a-DG prevents muscular
dystrophy

We examined hematoxylin and eosin (H&E) stained sections
of the quadriceps, gastrocnemius, tibialis anterior, soleus,
iliopsoas and diaphragm muscles in Hp/þ and Hp/2 mice.
H&E staining revealed no clear difference between Hp/þ
and Hp/2 mice. Histopathological features of muscular dys-
trophy, such as centrally located nuclei, tissue fibrosis and
fatty infiltration were not observed in 10-week-old FCMD
models Hp/2 (Fig. 3A) and Hp/Hp mice (data not shown).
Although FCMD onset in humans occurs at or near birth, we
also examined older mice to determine whether onset in
Hp/2 mice was delayed. Even in older mice (.1 year old),
we observed no signs of muscular dystrophy (Fig. 3B).
There was no obvious change in the expression level of
laminin a2 chain, which is the major ligand of a-DG in the
skeletal muscle (Supplementary Material, Fig. S1).

Both hypoglycosylated and IIH6-positive intact a-DG
proteins were detected in Hp/Hp and Hp/2 mouse brains
(Supplementary Material, Fig. S2). As is the case with skeletal
muscle, Hp/2 mice contained more hypoglycosylated a-DG.
Apparent brain histological abnormality was hardly detected
in Hp/2 mice; only a few mice showed a very small ectopic
cluster of neurons migrating into the marginal zone. We also
analyzed a-DG in heart, liver, and lung from Hp/2 mice,
and found that the levels of hypoglycosylation and laminin-
binding activity vary between the tissues (less affected in
heart and liver) (Supplementary Material, Figs S2 and S3).

To analyze potential weakness in muscle cell membrane
integrity, which may not be detectable in housed mice by H&E
staining, Hp/2 mice were subjected to treadmill exercise
followed by the measurement of Evans blue dye (EBD) incorpor-
ation into muscle fibers. EBD is a membrane-impermeant
molecule that binds to serum albumin and is physically restricted
from fibers unless the skeletal muscle membrane is damaged
(30). Even after exercising to exhaustion, Hp/2 mice showed
no EBD uptake in muscle cells (data not shown).

Figure 2. FCMD models exhibit hypoglycosylation and laminin-binding activity.
(A) Schematic representation of the control and mutant fukutin genes in model
mice. 1, wild-type mice (þ/þ); 2, mice carrying a neo-disrupted fukutin allele
(þ/2); 3, mice homozygous for the Hn allele (Hn/Hn); 4, mice homozygous
for the Hp allele (Hp/Hp); 5, mice with a Hp allele and an intact mouse fukutin
allele (Hp/þ); and 6, mice with a Hp allele and a neo-disrupted allele (Hp/2).
Exons are indicated with filled boxes. Portions derived from human fukutin
exon 10 are shown in orange and green (30-UTR). The retrotransposal insertion
is shown in red. (B–F) Biochemical characterization of FCMD model mice.
WGA beads were added to solubilized skeletal muscle samples to enrich DG
from each model mouse. FCMD models are shown in red (Hp/Hp and Hp/2).
WGA preparations were analyzed by western blot using antibodies against core
protein (B) and glycosylated a-DG (C). The western blot for b-DG shows com-
parable amounts of DG proteins in each lane (D). Overexposure of blots analyzing
core protein and glycosylateda-DG detected the presence of intacta-DG proteins
in Hp/2 mice (E). The portions of normal-sized and hypoglycosylateda-DGs are
indicated at the right side of the blots. A laminin overlay assay was performed
using samples from Hp/2 mice and the litter control Hp/þ mice (F).
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Reduction of laminin-binding activity due to hypoglycosy-
lation of a-DG is thought to be the main cause of dystroglyca-
nopathy. Therefore, we hypothesized that the minimal levels
of intact a-DG species observed in Hp/2 mice are sufficient
to maintain linkage to laminin and prevent disease pro-
gression. To test this hypothesis, we compared the laminin-
binding activity in Hp/2 mice with that in Largemyd (myd/
myd) mice, which represent another dystroglycanopathy
model with a muscular dystrophy phenotype (21). H&E analy-
sis confirmed signs of muscular dystrophy (centrally located
nuclei and fiber size variation) in myd/myd mice, but not in
Hp/2 mice (Fig. 4A and B). In contrast with Hp/2 mice,

western blot analysis of a-DG core protein in myd/myd
mice revealed no intact size (�150 kDa) of a-DG species
(Fig. 4C and D), indicating that almost all a-DG is hypoglyco-
sylated in myd/myd mice. The laminin-binding activity of
a-DG in Hp/2 and myd/myd mice was measured using a
quantitative solid-phase laminin-binding assay and compared
with litter controls (Hp/þ and myd/þ mice, respectively)
(Fig. 4E and F). Laminin-binding activity was �50% of
normal in Hp/2 mice but less than 5% of normal in myd/
myd mice. The solid-phase binding analysis shows no
obvious difference between wild-type and Hp/þ. These data
demonstrate that levels of glycosylation (indicated by IIH6
immunoreactivity and the presence of �150 kDa a-DG) influ-
ence laminin-binding activity and indicate that only a small
amount of IIH6-reactive a-DG is required to maintain skeletal
muscle function.

Fukutin gene transfer restores glycosylation of a-DG in
knock-in mice

Our data strongly suggest that even partial restoration of a-DG
glycosylation is effective in reducing disease severity in

Figure 3. FCMD mice do not develop a muscular dystrophy phenotype.
Various skeletal muscle tissues from Hp/2 and littermate control Hp/þ
mice at 10 weeks (A) and .1 year (B) of age were analyzed by H&E staining.
No features of muscular dystrophy or other variation from controls were
observed in Hp/2 mice.

Figure 4. Laminin-binding activity is maintained in Hp/2 mice but barely
detected in Largemyd mice. H&E staining of quadriceps tissue from Hp/2
(A) and Largemyd (myd/myd) (B) mice are shown. WGA preparations from
the Hp/2 (C) and the myd/myd (D) skeletal muscle were also analyzed by
western blot using an antibody against a-DG core protein. Laminin-binding
activity in Hp/2 (E) and myd/myd (F) mice were measured using solid-phase
binding assays and compared to the littermate controls (Hp/þ and myd/þ).
Open squares (gray line) in panel E indicate laminin-binding activity in wild-
type mice.
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dystroglycanopathy. To examine whether glycosylation defects
can be recovered in vivo, a recombinant fukutin adenovirus was
injected into the hind limb muscle of 3-day-old Hp/2 and litter
control Hp/þ mice. Following 4 weeks of injections, a-DG
enriched samples were prepared using WGA beads and ana-
lyzed for glycosylation and laminin-binding activity. Western
blot analysis with anti-a-DG core protein antibodies revealed
that fukutin gene transfer into Hp/2 mice reduced hypoglyco-
sylated a-DG (�90 kDa) and increased levels of the normal-
sized a-DG species (�150 kDa) (Fig. 5A, lanes 3 and 4).
IIH6 reactivity and laminin-binding activity also increased fol-
lowing fukutin gene transfer into Hp/2 mice (Fig. 5B and C,
lanes 3 and 4). No obvious changes were observed in Hp/þ
mice after the gene transfer (Fig. 5C, lanes 1 and 2). These
results demonstrate that fukutin gene transfer can correct
biochemical abnormalities of a-DG in fukutin-deficient skeletal
muscle, and support that fukutin protein is involved in glycosy-
lation of a-DG.

Large gene transfer produces laminin-binding forms of
a-DG in dystroglycanopathy models

Hypoglycosylation leading to dystroglycanopathies is caused
by mutations in six known genes (fukutin, POMGnT1,
POMT1, POMT2, FKRP and LARGE) and other, unidentified
genes. In an effort to bypass the need for identification of
disease-causing genes in developing therapies (e.g. gene trans-
fer), we further explored a unique feature of LARGE. LARGE
has been demonstrated to induce a-DG hyperglycosylation,
which is detected by IIH6 as a broad band detected at 150–
300 kDa via SDS gel electrophoresis. This band shows
increased ligand-binding activity in samples from genetically
distinct diseases showing defective a-DG glycosylation
(FCMD, MEB and WWS) (26).

We examined whether adenoviral LARGE gene transfer
into Hp/2 skeletal muscle induces hyperglycosylation and
increases laminin-binding activity of a-DG. Immunofluores-
cence analysis of untreated control muscles revealed weaker
IIH6 reactivity in Hp/2 than in Hp/þ (Fig. 6A, 2LARGE).
Muscle sections subjected to gene transfer showed increased

a-DG glycosylation in transduced areas, as indicated by
eGFP expression in both Hp/2 and Hp/þ mice (Fig. 6A,
þLARGE). We also examined adenovirus-injected and non-
injected contralateral leg muscles using western blot analysis
with antibodies against a-DG core protein and IIH6. These
experiments showed that the LARGE gene transfer increased
IIH6 reactivity at �150 kDa in the Hp/2 muscle and pro-
duced a broad band with a molecular weight of 150–
250 kDa in both Hp/2 and Hp/þ muscles (Fig. 6B).
Anti-a-DG core protein antibodies poorly recognized a
higher molecular weight a-DG species (Fig. 6C), which is
consistent with previous reports (26). Following the LARGE
gene transfer, levels of hypoglycosylated a-DG species
decreased (Fig. 6C, lanes 3 and 4). These data indicate that

Figure 5. Fukutin gene transfer rescues the glycosylation abnormality in
Hp/2 mice. Hp/þ or Hp/2 pups were injected with adenovirus encoding
wild-type human fukutin in one leg (þ) and with saline in the contralateral
leg (2). Calf muscle was analyzed using western blot with antibodies
against core a-DG protein (A) and glycosylated a-DG (B) and using a
laminin overlay assay (C). Transfer of fukutin produced increases in a-DG
molecular weight, IIH6 reactivity and laminin binding activity in Hp/2 mice.

Figure 6. LARGE gene transfer produces functionally glycosylated a-DG in
Hp/2 mice. Hp/þ or Hp/2 pups were injected with an adenovirus encoding
LARGE in one leg (þ) and with saline in the contralateral leg (2). Calf
muscle was analyzed using IIH6 immunofluorescence (A). GFP fluorescence
represents muscle fibers successfully transduced by the adenoviral vectors.
WGA preparations were analyzed using western blots with antibodies
against glycosylated a-DG (B), a-DG core protein (C) and using a laminin
overlay assay (D). The western blot for b-DG shows comparable amounts
of DG proteins in each lane. Images with longer-exposures better indicate
the presence of hyperglycosylated a-DG (arrowheads). These results show
that the transfer of LARGE increases IIH6 reactivity and laminin-binding
activity in Hp/2 mice.
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LARGE-induced glycosylation occurs on hypoglycosylated
a-DG species. The IIH6-positive broad-molecular-weight
band was able to bind laminin in both Hp/2 and Hp/þ skel-
etal muscle samples (Fig. 6D, lanes 2 and 4). These data
indicate that LARGE can increase laminin-binding forms of
a-DG in fukutin-deficient skeletal muscle.

We further investigated whether LARGE gene transfer
induced hyperglycosylation and produced laminin-binding
forms of a-DG species in another dystroglycanopathy
model, the POMGnT1-disrupted mouse (POMGnT12/2)
(Miyagoe-Suzuki et al., manuscript in preparation). Western
blot analysis using a-DG core protein antibodies showed a
reduction of a-DG molecular weight to 60–90 kDa in
POMGnT12/2 mice (Fig. 7C, lane 4). Little IIH6 reactivity
was detected via immunofluorescence (Fig. 7A) and western
blot (Fig. 7B, lane 4) analysis. These data indicate hypoglyco-
sylation of a-DG in POMGnT12/2 mice. Accordingly,
laminin-binding activity was significantly reduced in
POMGnT12/2 mice compared with POMGnT1þ/2 or
POMGnT1þ/þ littermates (Fig. 7D, lanes 2, 4 and 6). The
minor laminin binding protein (�80-100 kDa, lane 4) detected
only in POMGnT12/2 is unidentified; however, similar
laminin binding was also observed in POMGnT1-deficient
MEB patients (20). A solid-phase binding assay also showed
minor levels of laminin-binding activity in POMGnT12/2

(Supplementary Material, Fig. S4). For all genotypes, adeno-
viral LARGE gene transfer increased IIH6 reactivity in trans-
duced areas indicated by eGFP expression (Fig. 7A, þ/þ,

þ/2, and 2/2). Western blot analysis using IIH6 showed
that LARGE gene transfer also induced hyperglycosylation
of a-DG in all genotypes, as indicated by broad bands with
molecular weights from 150 to .250 kDa (Fig. 7B). After
the gene transfer, the POMGnT12/2 skeletal muscle showed
only hyperglycosylated IIH6-positive species, while the
POMGnT1þ/þ and the POMGnT1þ/2 muscles showed both
hyperglycosylated and the original 150 kDa IIH6-positive
species. Overlay assays showed that the laminin-binding
epitope was produced on hyperglycosylated a-DG (Fig. 7D).
These data support the idea that LARGE is an effective
target for increasing or restoring laminin-binding activity of
a-DG in dystroglycanopathy.

DISCUSSION

We have used several approaches to generate FCMD model
animals. Fukutin-null mice result in embryonic lethality
(27). Fukutin-chimera mice derived from ES cells targeted
for both fukutin alleles (28) develop muscular dystrophy, but
are inappropriate therapeutic study models because (i) they
show wide variation in disease severity, and (ii) muscle cell
fusion events during growth and regeneration can alter the
population of fukutin-null cells. Therefore, we decided to
introduce the disease-causing retrotransposon into the mouse
fukutin gene to mimic the most prevalent form of human
FCMD. In these knock-in Hp/Hp and Hp/2 mice, we detected
hypoglycosylated a-DG, as is seen in FCMD patients (20,31),
so we consider them to be novel models for FCMD.

Spontaneous Largemyd and Largevls mice (21,32) and
genetically engineered POMGnT1-deficient mice (33) have
been reported as dystroglycanopathy models. Because these
models mimic null mutations such as nonsense and frameshift
mutations, they do not necessarily represent human diseases
caused by missense mutations. Our knock-in mice with the ret-
rotransposal fukutin insertion are the first dystroglycanopathy
model that carries a human disease-causing mutation. Such
models are needed to explain the molecular pathogenesis of
diseases, to determine the function of responsible genes and
to screen drugs that correct specific defects (34).

Although these mice genetically and biochemically rep-
resent features of fukutin-deficient muscular dystrophies,
histological analysis has revealed no signs of muscular
dystrophy. In typical cases of FCMD, normal-sized a-DG
with IIH6-reactivity is barely detected, and laminin-binding
activity is dramatically reduced (20). Comparing Hp/2 mice
with Largemyd mice led us to reason that the remaining
intact a-DG and laminin-binding activity in Hp/2 mice
might be sufficient to prevent disease progression. In the
future, it would be important to elucidate the threshold level
of glycosylation required to avoid a phenotype by using a
model system that can control glycosylation levels in vivo.
In Hp/2 mice, residual laminin-binding is detected from
DG species with slightly lower molecular weight
(,150 kDa) (Fig. 2F), whereas this is not the case for
human patients even with retained laminin binding (35). The
difference suggests that mice may have additional laminin-
binding epitopes, which are less susceptible to fukutin
defects. Alternatively, other factors may compensate for

Figure 7. LARGE gene transfer produces functionally glycosylated a-DG in
MEB disease model mice. POMGnT1þ/þ, POMGnT1þ/2 or POMGnT12/2

pups were injected with adenovirus encoding LARGE in one leg (þLARGE)
and with saline in the contralateral leg (2LARGE). Calf muscle was analyzed
using IIH6 immunofluorescence (A). GFP fluorescence represents muscle
fibers successfully transduced by the adenoviral vectors. WGA preparations
were analyzed using western blots with antibodies against glycosylated
a-DG (B) and a-DG core protein (C) and using a laminin overlay assay
(D). These results show that transfer of LARGE increases IIH6 reactivity
and laminin-binding activity in POMGnT12/2 mice, the model for MEB
disease.
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reduced laminin-binding to a-DG. For example, it has been
suggested that integrin a7, another laminin receptor in
skeletal muscle, may account for the difference in clinical
severity between mice and humans with dystrophin- or the
DGC-defects (36,37). Clarifying the factors involved would
be necessary for a better understanding of pathomechanism,
which could promote identification of novel therapeutic
targets.

Also important is the finding that even a small amount
of IIH6-immunoreactivity of a-DG is sufficient to maintain
skeletal muscle function. This concept is supported by
milder cases of human patients with fukutin mutations (35).
Murakami et al. have described reduced but detectable
IIH6-reactivity and intact a-DG in patients who are compound
heterozygous for the fukutin retrotransposon insertion and a
missense mutation (R179T or Q358P). These individuals
showed minimal dystrophic features and normal intelligence.
Laminin-binding activity is also retained in all cases. These
findings provide further evidence that the disease severity of
fukutin-deficient muscular dystrophy is related to the ratio of
normal glycosylation to hypoglycosylation.

Such correlation has been observed in other dystroglycano-
pathies. LGMD2I patients at the severe end of the clinical
spectrum tend to show the greatest reduction in a-DG glyco-
sylation, while those at the milder end tend to have relatively
well-preserved a-DG glycosylation (38). Most known
missense mutations in POMGnT1 disrupt POMGnT enzyme
activity, causing hypoglycosylation of a-DG and a severe con-
genital muscular dystrophy phenotype (39,40). Clement et al.
(6) have reported a patient with a milder LGMD phenotype
who carries a novel homozygous missense mutation in
POMGnT1. Studies of this patient’s fibroblasts showed an
altered kinetic profile but intact enzyme activity, explaining
the relatively mild phenotype. Furthermore, a recent systema-
tic and large-scale study of genotype–phenotype correlation in
dystroglycanopathy revealed a wide spectrum of clinical
severity in specific disease-causing genes (18). A broad corre-
lation between the amount of depleted glycosylated epitope
and phenotypic severity was described, though not systemati-
cally quantified. A more recent study reported a few cases with
less correlation between clinical course and a-DG immunola-
beling (41). We propose that, in addition to immunolabeling,
combination of western blotting and laminin binding assays
will be necessary for further advances in both clinical and
basic biomedical research.

The present study strongly suggests that full recovery of
a-DG glycosylation is not always necessary; partial restor-
ation of a-DG glycosylation might be enough to prevent or
slow disease progression. The simplest way to restore a-DG
glycosylation in dystroglycanopathies would be by replacing
a defective gene with the normal version. In many cases,
though, the disease-causing gene is not known. A recent
study revealed that most patients with a dystroglycanopathy
harbor mutations in novel genes (18). To increase amounts
of glycosylated a-DG with laminin-binding activity regardless
of the responsible gene, we took advantage of the observation
that overexpression of LARGE can produce hyperglycosylated
a-DG with increased laminin-binding activity in cells from
genetically distinct dystroglycanopathies (26). LARGE-
induced hyperglycosylation of a-DG has also been observed

in both CHO glycosylation mutants showing defective transfer
of sialic acid, galactose or fucose to glycoconjugates and in a
mutant that is unable to synthesize O-mannose glycan (42).
Such a ‘super-effect’ of LARGE on a-DG glycosylation has
been observed in vitro, but no in vivo study has been reported
except in Largemyd mice (26). Gene transfer of LARGE into
Largemyd mice essentially replaces the defective gene with
the normal version of the gene. Our results provide the
first in vivo evidence that LARGE gene transfer can bypass
the glycosylation defects of a-DG in models other than the
Largemyd mice. These results support the idea that glycothera-
pies aimed at modulating LARGE may be a therapeutic
option for many a-DG glycosylation-deficient muscular
dystrophies.

Overall, our biochemical, histological and gene transfer
experiments using novel model mice with disease-causing
mutations support the efficacy of glycotherapy in dystroglyca-
nopathies. The models developed here will be powerful in
understanding the pathomechanism of FCMD and other
related diseases.

MATERIALS AND METHODS

Generation of model mice

A targeting vector containing the retrotransposal insertion of
human FCMD patients was generated using a site-directed
DNA integration technique (43). Briefly, lox71 and
TK-loxP-neo pA fragments (44) were inserted 50 and 30 to
exon 10 of mouse fukutin (Fig. 1A, no. 2). To excise a
floxed part of exon 10 (Fig. 1A, no. 3 Dexon10), Cre was
expressed in mouse embryonic stem (ES) cells. Meanwhile,
lox66 and TK-loxP fragments were inserted 50 and 30 to
exon 10 of human fukutin, with or without a retrotransposal
insertion (Fig. 1A, nos 4 and 5). Each construct was
co-transfected with a Cre-expressing vector into ES cells
that constitutively express the Dexon10 construct, to obtain
recombinant knock-in alleles (Fig. 1A, nos 6 and 7). The trans-
genic alleles containing normal human exon 10 and mutant
exon 10 were named Hn (representing ‘human normal’) and
Hp (representing ‘human patient’), respectively. Targeted ES
cell clones were injected into blastocysts, and germline-
competent heterozygous mice were in turn mated to generate
homozygous mutants.

Genotyping of each transgene was performed using PCR
with the following primers: FCMDKIF1, GAAACTCTGC-
CATGACACCTC: HNC440R, ACCAGCTTAAATGCCCA-
GAAG: Wild R2, GAAGCCAACTGTGTACCACAC. The
FCMDKIF1 and HNC440R, and FCMDKIF1 and Wild R2
primer pairs yielded bands of �800 bp (knock-in allele) and
�1100 bp (wild-type allele), respectively. Genotyping of a
fukutin allele disruption by a neo replacement (fukutin null)
was described previously (45). The primers for fukutin RT–
PCR are AGGGAATGGGCTGGTAGACT and GTGCCATT
TTGGGACAAGTT.

C57BL/6 mice were obtained from Japan SLC, Inc., and
Largemyd mice were obtained from The Jackson Laboratory.
Mice were maintained in accordance with the animal care
guidelines of Otsuka Pharmaceutical Co. Ltd. and Osaka
University.
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Antibodies

Antibodies used in western blots and immunofluorescence were
as follows: mouse monoclonal antibody 8D5 against b-DG
(Novacastra); mouse monoclonal antibody IIH6 against a-DG
(Upstate); and polyclonal anti-laminin (Sigma). We generated
goat polyclonal antibodies against a-DG core protein using
GST fusion proteins containing the N- or C-terminal domains
of mouse a-DG. Antisera (074G) were affinity-purified using
an a-DG-Fc fusion protein expressed in HEK293 cells. The pur-
ified antibody was named AP-074G-C.

Dystroglycan preparation and western blotting

DG was enriched from solubilized skeletal muscle as pre-
viously described (20,29). Briefly, 100 mg of muscle was solu-
bilized in 1 ml of Tris-buffered saline (TBS) containing 1%
Triton X-100 and protease inhibitors (Funakoshi). The solubil-
ized fraction was incubated with 30 ml of WGA–agarose
beads (Vector Labs) at 48C for 16 h. Beads were washed
three times in 1 ml TBS containing 0.1% Triton X-100 and
protease inhibitors. The beads were then either directly
boiled for 5 min in SDS–polyacrylamide gel electrophoresis
(PAGE) loading buffer (western blot and laminin overlay) or
eluted with 300 ml TBS containing 0.1% Triton X-100, pro-
tease inhibitors and 300 mM N-acetylglucosamine (solid-phase
binding assay). Proteins were separated using 7.5% or 10%
SDS–PAGE. Gels were transferred to polyvinylidene fluoride
(PVDF) membrane (Millipore, Bedford, MA, USA). Blots
were probed with DG antibodies and then developed with
horseradish peroxidase (HRP)-enhanced chemiluminescence
(Supersignal West Pico, Pierce; or ECL Plus, GE Healthcare).

Immunofluorescence and histological analysis

Cryosections (7 mm) were prepared and analyzed using immuno-
fluorescence or H&E staining. Sections were stained for 2 min in
hematoxylin, 1 min in eosin and then dehydrated with ethanol and
xylenes. For immunofluorescence staining with IIH6, sections
were treated with cold ethanol/acetone (1:1) for 1 min, blocked
with 5% goat serum in MOM Mouse Ig Blocking Reagent
(Vector Laboratories) at room temperature for 1 h and then
incubated with primary antibodies diluted in MOM Diluent
(Vector Laboratories) overnight at 48C. The slides were washed
with PBS and incubated with Alexa Fluor 488-conjugated anti-
mouse IgM antibody (Molecular Probes) at room temperature
for 30 min. For GFP detection, sections were fixed with 4%
paraformaldehyde in PBS for 10 min, washed with PBS three
times and then mounted. Permountw (Fisher Scientific) and
TISSU MOUNTw (Shiraimatsu Kikai) were used for H&E
staining and immunofluorescence, respectively. Sections were
observed under fluorescence microscopy (Leica DMR, Leica
Microsystems). For EBD uptake, mice were exercised on a
treadmill (MK-680S, Muromachi Kikai) as described (34).

Laminin-binding assay

Laminin-binding activity was examined as previously reported
(20) with slight modifications. Laminin overlay assays were
performed on PVDF membranes using mouse Engelbreth–

Holm–Swarm (EHS) laminin (Sigma). Briefly, PVDF mem-
branes were blocked in laminin-binding buffer (LBB: 10 mM

triethanolamine, 140 mM NaCl, 1 mM MgCl2, 1 mM CaCl2, pH
7.6) containing 5% non-fat dry milk followed by incubation
with 7.5 nM laminin at 48C for 12 h in LBB with 3% BSA.
Membranes were washed and incubated with anti-laminin
(Sigma) at 48C for 3 h followed by anti-rabbit IgG–HRP at
room temperature for 45 min. Blots were developed by
enhanced chemiluminescence (Supersignal West Pico, Pierce).

For the solid-phase binding assay, WGA eluates were
diluted 1:50 in TBS and coated on polystyrene ELISA micro-
plates (Costar) for 16 h at 48C. Plates were washed in LBB and
blocked for 2 h in 3% BSA in LBB. Mouse EHS laminin was
diluted in LBB and applied for 1 h. Wells were washed with
3% BSA in LBB, incubated for 1 h with 1:10,000 anti-laminin
(Sigma) followed by anti-rabbit HRP. Plates were developed
with o-phenylenediamine dihydrochloride and H2O2, then
reactions were stopped with 2 N H2SO4 and values obtained
on a microplate reader. The data were fit to the equation
A¼Bmaxx/(Kdþx), where Kd is the dissociation constant, A is
absorbance and Bmax is maximal binding.

Adenoviral gene transfer

The complete open reading frame of mouse fukutin was cloned
into the EcoRI site of the pKSCX-EGFP vector (46). The
pKSCX-EGFP vector contains IRES-EGFP so that both the
fukutin and GFP genes are expressed bicistronically under
the CAG promoter. This expression cassette was digested
with SwaI, and then its blunt-ended fragment was ligated
into the adenoviral cosmid vector. The recombinant adenoviral
vector encoding fukutin was generated using the method of
Tashiro et al. (46).

Generation of the recombinant adenoviral vector encoding
LARGE has been previously described (26). Amplified adeno-
viruses were purified using VIVAPURE ADENOPACK 100
(VIVASCIENCE).

In vivo gene transfer was performed with Hp/2 and control
littermate Hp/þ pups, age 2–4 d. Adenoviruses were injected
percutaneously into the calf and hamstring with 1 � 108–1 �
109 particles in 10 ml of saline solution. Mock injections used
saline solution only. Four weeks after injection, experimental
and control contralateral leg muscles were subjected to immu-
nofluorescence and biochemical analysis.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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SUPPLEMENTAL MATERIAL 

 

Supplementary Figure 1 

Expression of laminin αααα2 

Quadriceps muscles from Hp/+ or Hp/- mice were analyzed with anti-laminin α2 

antibody (4H8-2).  The result shows no obvious difference in the expression of laminin 

α2 chain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 2 

Hypoglycosylation of αααα-DG in Hp/- mouse brain 

WGA-enriched DG from solubilized brain samples were analyzed by Western blot using 

antibodies against core protein and glycosylated α-DG (IIH6), and using a laminin 

overlay assay.  The Western blot for β-DG shows comparable amounts of DG proteins 

in each lane.  The results indicate that both intact and hypoglycosylated α-DG are 

present in Hp/Hp and Hp/- mouse brains.   

 



Supplementary Figure 3 

Western blotting and laminin overlay assays of Hp/- mouse heart, liver, and lung 

WGA-enriched DG from solubilized heart, liver, and lung samples were analyzed by 

Western blot using antibodies against core protein (core) and glycosylated (IIH6) α-DG, 

and using a laminin overlay assay.  The Western blot for β-DG shows comparable 

amounts of DG proteins in each lane.  The results show that levels of 

hypoglycosylation vary between the tissues (less affected in heart and liver).  It has 

been also reported that IIH6 reactivity and laminin-binding activity varies among tissues 

(1).  As reported, IIH6 reactivity and laminin-binding activity of α-DG was hardly 

detected in liver and lung. 

 

 

 



Supplementary Figure 4 

A solid-phase laminin-binding assay of POMGnT1
-/-

 mice   

WGA-enriched preparations from POMGnT1
-/-

 (open triangles), POMGnT1
+/-

 (filled 

triangles), and POMGnT1
+/+

 (open squares and gray line) skeletal muscles were 

measured for a solid-phase laminin-binding assay.  The results showed minor levels of 

laminin-binding activity in POMGnT1
-/-

. 
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